Solveeit Logo

Question

Question: If $\int \frac{2e^x + 3e^{-x}}{3e^x + 4e^{-x}} dx = Ax + Blog(3e^{2x} + 4) + C$, then values of A an...

If 2ex+3ex3ex+4exdx=Ax+Blog(3e2x+4)+C\int \frac{2e^x + 3e^{-x}}{3e^x + 4e^{-x}} dx = Ax + Blog(3e^{2x} + 4) + C, then values of A and B are respectively (where C is a constant of integration.)

A

34,124\frac{3}{4}, \frac{1}{24}

B

43,24\frac{4}{3}, -24

C

14,124\frac{1}{4}, \frac{1}{24}

D

34,124\frac{3}{4}, \frac{-1}{24}

Answer

(D)

Explanation

Solution

Let the given integral be II.

I=2ex+3ex3ex+4exdxI = \int \frac{2e^x + 3e^{-x}}{3e^x + 4e^{-x}} dx

We are given that the result of the integral is Ax+Blog(3e2x+4)+CAx + Blog(3e^{2x} + 4) + C.

Let F(x)=Ax+Blog(3e2x+4)+CF(x) = Ax + Blog(3e^{2x} + 4) + C.

Then, the derivative of F(x)F(x) with respect to xx must be equal to the integrand.

F(x)=ddx(Ax+Blog(3e2x+4)+C)F'(x) = \frac{d}{dx} (Ax + Blog(3e^{2x} + 4) + C)

F(x)=A+Bddx(log(3e2x+4))+0F'(x) = A + B \frac{d}{dx}(log(3e^{2x} + 4)) + 0

Using the chain rule, ddx(log(u))=1ududx\frac{d}{dx}(log(u)) = \frac{1}{u} \frac{du}{dx}. Let u=3e2x+4u = 3e^{2x} + 4.

dudx=ddx(3e2x+4)=3ddx(e2x)+ddx(4)=3(e2x2)+0=6e2x\frac{du}{dx} = \frac{d}{dx}(3e^{2x} + 4) = 3 \frac{d}{dx}(e^{2x}) + \frac{d}{dx}(4) = 3(e^{2x} \cdot 2) + 0 = 6e^{2x}.

So, ddx(log(3e2x+4))=6e2x3e2x+4\frac{d}{dx}(log(3e^{2x} + 4)) = \frac{6e^{2x}}{3e^{2x} + 4}.

Thus, F(x)=A+B6e2x3e2x+4F'(x) = A + B \frac{6e^{2x}}{3e^{2x} + 4}.

We need to equate this to the integrand:

2ex+3ex3ex+4ex=A+B6e2x3e2x+4\frac{2e^x + 3e^{-x}}{3e^x + 4e^{-x}} = A + B \frac{6e^{2x}}{3e^{2x} + 4}

Let's simplify the integrand by multiplying the numerator and the denominator by exe^x:

(2ex+3ex)ex(3ex+4ex)ex=2e2x+3e03e2x+4e0=2e2x+33e2x+4\frac{(2e^x + 3e^{-x})e^x}{(3e^x + 4e^{-x})e^x} = \frac{2e^{2x} + 3e^0}{3e^{2x} + 4e^0} = \frac{2e^{2x} + 3}{3e^{2x} + 4}.

Now, equate the simplified integrand to F(x)F'(x):

2e2x+33e2x+4=A+B6e2x3e2x+4\frac{2e^{2x} + 3}{3e^{2x} + 4} = A + B \frac{6e^{2x}}{3e^{2x} + 4}

Combine the terms on the right side by finding a common denominator:

A+B6e2x3e2x+4=A(3e2x+4)3e2x+4+6Be2x3e2x+4=3Ae2x+4A+6Be2x3e2x+4A + B \frac{6e^{2x}}{3e^{2x} + 4} = \frac{A(3e^{2x} + 4)}{3e^{2x} + 4} + \frac{6Be^{2x}}{3e^{2x} + 4} = \frac{3Ae^{2x} + 4A + 6Be^{2x}}{3e^{2x} + 4}

=(3A+6B)e2x+4A3e2x+4= \frac{(3A + 6B)e^{2x} + 4A}{3e^{2x} + 4}.

Equating the numerators:

2e2x+3=(3A+6B)e2x+4A2e^{2x} + 3 = (3A + 6B)e^{2x} + 4A.

This equation must hold for all values of xx. By comparing the coefficients of e2xe^{2x} and the constant terms on both sides, we get a system of linear equations for A and B:

Comparing coefficients of e2xe^{2x}: 2=3A+6B2 = 3A + 6B

Comparing constant terms: 3=4A3 = 4A

From the second equation, 4A=3    A=344A = 3 \implies A = \frac{3}{4}.

Substitute the value of A into the first equation:

2=3(34)+6B2 = 3\left(\frac{3}{4}\right) + 6B

2=94+6B2 = \frac{9}{4} + 6B

6B=2946B = 2 - \frac{9}{4}

6B=84946B = \frac{8}{4} - \frac{9}{4}

6B=146B = -\frac{1}{4}

B=14×6B = -\frac{1}{4 \times 6}

B=124B = -\frac{1}{24}.

Thus, the values of A and B are 34\frac{3}{4} and 124-\frac{1}{24} respectively.