Solveeit Logo

Question

Question: If $f(x)$ is a polynomial of least degree, such that $\lim_{x\to0}\left(1+\frac{f(x)+x^2}{x^2}\right...

If f(x)f(x) is a polynomial of least degree, such that limx0(1+f(x)+x2x2)1/x=e2\lim_{x\to0}\left(1+\frac{f(x)+x^2}{x^2}\right)^{1/x}=e^2, then f(2)f(2) is -

A

2

B

8

C

10

D

12

Answer

12

Explanation

Solution

The given limit is limx0(1+f(x)+x2x2)1/x=e2\lim_{x\to0}\left(1+\frac{f(x)+x^2}{x^2}\right)^{1/x}=e^2. This limit is of the form 11^\infty. We use the property limxa(1+g(x))h(x)=elimxag(x)h(x)\lim_{x\to a} (1+g(x))^{h(x)} = e^{\lim_{x\to a} g(x)h(x)}. Here, g(x)=f(x)+x2x2g(x) = \frac{f(x)+x^2}{x^2} and h(x)=1xh(x) = \frac{1}{x}. For the limit to be finite, limx0g(x)=limx0f(x)+x2x2=0\lim_{x\to0} g(x) = \lim_{x\to0} \frac{f(x)+x^2}{x^2} = 0. This implies that f(x)f(x) must have terms that cancel out the x2x^2 in the denominator and result in terms of degree higher than 2. Thus, f(x)f(x) must be of the form f(x)=x2+a3x3+a4x4+f(x) = -x^2 + a_3 x^3 + a_4 x^4 + \dots. Now, consider the exponent: limx0g(x)h(x)=limx0(f(x)+x2x2)(1x)\lim_{x\to0} g(x)h(x) = \lim_{x\to0} \left(\frac{f(x)+x^2}{x^2}\right) \left(\frac{1}{x}\right) Substitute f(x)=x2+a3x3+a4x4+f(x) = -x^2 + a_3 x^3 + a_4 x^4 + \dots: limx0(x2+a3x3+a4x4++x2x2)(1x)\lim_{x\to0} \left(\frac{-x^2 + a_3 x^3 + a_4 x^4 + \dots + x^2}{x^2}\right) \left(\frac{1}{x}\right) =limx0(a3x3+a4x4+x2)(1x)= \lim_{x\to0} \left(\frac{a_3 x^3 + a_4 x^4 + \dots}{x^2}\right) \left(\frac{1}{x}\right) =limx0(a3x+a4x2+)(1x)= \lim_{x\to0} (a_3 x + a_4 x^2 + \dots) \left(\frac{1}{x}\right) =limx0(a3+a4x+)= \lim_{x\to0} (a_3 + a_4 x + \dots) This limit equals a3a_3. We are given that the original limit is e2e^2, so the exponent must be 2: a3=2a_3 = 2. Since f(x)f(x) is a polynomial of the least degree, we set all higher-order coefficients to zero. Thus, f(x)=x2+2x3f(x) = -x^2 + 2x^3. We need to find f(2)f(2): f(2)=(2)2+2(2)3=4+2(8)=4+16=12f(2) = -(2)^2 + 2(2)^3 = -4 + 2(8) = -4 + 16 = 12.