Solveeit Logo

Question

Question: If angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ is $\pi/3$ then angle between $\overr...

If angle between a\overrightarrow{a} and b\overrightarrow{b} is π/3\pi/3 then angle between a\overrightarrow{a} and 2b-2\overrightarrow{b} is :

A

π/4\pi/4

B

2π/32\pi/3

C

π\pi

D

π/3\pi/3

Answer

2π/32\pi/3

Explanation

Solution

Let θ\theta be the angle between vectors a\overrightarrow{a} and b\overrightarrow{b}. We are given θ=π/3\theta = \pi/3. Let ϕ\phi be the angle between vectors a\overrightarrow{a} and 2b-2\overrightarrow{b}. We want to find ϕ\phi.

The angle between two vectors u\overrightarrow{u} and v\overrightarrow{v} can be found using the dot product formula: cosθ=uvuv\cos \theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| |\overrightarrow{v}|}

For the angle between a\overrightarrow{a} and b\overrightarrow{b}, we have: cos(π/3)=abab\cos(\pi/3) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|}

Since cos(π/3)=1/2\cos(\pi/3) = 1/2, we have abab=1/2\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = 1/2.

For the angle ϕ\phi between a\overrightarrow{a} and 2b-2\overrightarrow{b}, we have: cosϕ=a(2b)a2b\cos \phi = \frac{\overrightarrow{a} \cdot (-2\overrightarrow{b})}{|\overrightarrow{a}| |-2\overrightarrow{b}|}

Using the properties of the dot product and vector magnitude: a(2b)=2(ab)\overrightarrow{a} \cdot (-2\overrightarrow{b}) = -2 (\overrightarrow{a} \cdot \overrightarrow{b}) 2b=2b=2b|-2\overrightarrow{b}| = |-2| |\overrightarrow{b}| = 2 |\overrightarrow{b}|

Substitute these into the formula for cosϕ\cos \phi: cosϕ=2(ab)a(2b)\cos \phi = \frac{-2 (\overrightarrow{a} \cdot \overrightarrow{b})}{|\overrightarrow{a}| (2 |\overrightarrow{b}|)} cosϕ=(ab)ab\cos \phi = \frac{- (\overrightarrow{a} \cdot \overrightarrow{b})}{|\overrightarrow{a}| |\overrightarrow{b}|}

We know that abab=cos(π/3)=1/2\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \cos(\pi/3) = 1/2. So, cosϕ=(1/2)=1/2\cos \phi = - (1/2) = -1/2.

The angle ϕ\phi between two vectors is conventionally taken to be in the range [0,π][0, \pi]. We need to find ϕ[0,π]\phi \in [0, \pi] such that cosϕ=1/2\cos \phi = -1/2. The angle is ϕ=2π/3\phi = 2\pi/3.