Solveeit Logo

Question

Question: $\frac{1+x}{x \sin^2 (x+\log x)}$...

1+xxsin2(x+logx)\frac{1+x}{x \sin^2 (x+\log x)}

Answer

cot(x+logx)+C-\cot (x + \log x) + C

Explanation

Solution

To evaluate the integral 1+xxsin2(x+logx)dx\int \frac{1+x}{x \sin^2 (x+\log x)} dx, we can use the method of substitution.

Let t=x+logxt = x + \log x.

Now, we find the differential dtdt by differentiating tt with respect to xx: dt=ddx(x+logx)dxdt = \frac{d}{dx}(x + \log x) dx dt=(1+1x)dxdt = \left(1 + \frac{1}{x}\right) dx dt=(x+1x)dxdt = \left(\frac{x+1}{x}\right) dx

Observe that the term 1+xxdx\frac{1+x}{x} dx is present in the integrand. So, the integral can be rewritten as: 1sin2(x+logx)(1+xx)dx\int \frac{1}{\sin^2 (x+\log x)} \cdot \left(\frac{1+x}{x}\right) dx

Substitute t=x+logxt = x + \log x and dt=1+xxdxdt = \frac{1+x}{x} dx into the integral: 1sin2tdt\int \frac{1}{\sin^2 t} dt

We know that 1sin2t=csc2t\frac{1}{\sin^2 t} = \csc^2 t. So, the integral becomes: csc2tdt\int \csc^2 t dt

The standard integral of csc2t\csc^2 t is cott+C-\cot t + C, where CC is the constant of integration. Thus, csc2tdt=cott+C\int \csc^2 t dt = -\cot t + C

Finally, substitute back t=x+logxt = x + \log x: cot(x+logx)+C-\cot (x + \log x) + C