Solveeit Logo

Question

Question: The unit vector perpendicular to the plane 4x - 3y + 12z = 15 is...

The unit vector perpendicular to the plane 4x - 3y + 12z = 15 is

A

4i3j+12k5\frac{4i-3j+12k}{5}

B

4i3j+12k13\frac{-4i-3j+12k}{13}

C

4i+3j+12k13\frac{4i+3j+12k}{13}

D

4i+3j+12k13\frac{-4i+3j+12k}{13}

Answer

None of the given options.

Explanation

Solution

For a plane given by

4x3y+12z=154x-3y+12z=15,

the normal vector is

n=(4,3,12)\mathbf{n}=(4,-3,12).

Its magnitude is

n=42+(3)2+122=16+9+144=169=13|\mathbf{n}|=\sqrt{4^2+(-3)^2+12^2}=\sqrt{16+9+144}=\sqrt{169}=13.

Thus, the unit vector perpendicular to the plane is

nn=4i3j+12k13\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{4i-3j+12k}{13}.

None of the given options match 4i3j+12k13\frac{4i-3j+12k}{13}.