Solveeit Logo

Question

Question: The radius of curvature of each surface of a convex lens having refractive index 1.8 is 20 cm. The l...

The radius of curvature of each surface of a convex lens having refractive index 1.8 is 20 cm. The lens is now immersed in a liquid of refractive index 1.5. The ratio of power of lens in air to its power in the liquid will be x : 1. The value of x is- [JEE MAIN-2023]

Answer

4

Explanation

Solution

A symmetric biconvex lens (each surface radius R = 20 cm) in air obeys the lens‐maker’s formula

1fair=(n1)(1R11R2)\displaystyle \frac{1}{f_{\rm air}}=(n-1)\Bigl(\frac{1}{R_1}-\frac{1}{R_2}\Bigr).

For a symmetric lens, take R1=20R_1=20 cm and R2=20R_2=-20 cm so that

1fair=(1.81)(120(120))=0.8(220)=0.08,\displaystyle \frac{1}{f_{\rm air}}=(1.8-1)\Bigl(\frac{1}{20}-\bigl(-\frac{1}{20}\bigr)\Bigr)=0.8\Bigl(\frac{2}{20}\Bigr)=0.08,

i.e. fair=12.5f_{\rm air}=12.5 cm.

When immersed in a liquid of refractive index 1.5, the formula becomes

1fliq=(nlensnliq1)(1R11R2).\displaystyle \frac{1}{f_{\rm liq}}=\Bigl(\frac{n_{\rm lens}}{n_{\rm liq}}-1\Bigr)\Bigl(\frac{1}{R_1}-\frac{1}{R_2}\Bigr).

Here,

nlensnliq1=1.81.51=1.21=0.2,\displaystyle \frac{n_{\rm lens}}{n_{\rm liq}}-1=\frac{1.8}{1.5}-1=1.2-1=0.2,

so

1fliq=0.2(220)=0.02,fliq=50\displaystyle \frac{1}{f_{\rm liq}}=0.2\Bigl(\frac{2}{20}\Bigr)=0.02,\quad f_{\rm liq}=50 cm.

The power P=1/fP=1/f (with f in meters). Hence the ratio

PairPliq=fliqfair=5012.5=4.\displaystyle \frac{P_{\rm air}}{P_{\rm liq}}=\frac{f_{\rm liq}}{f_{\rm air}}=\frac{50}{12.5}=4.

Thus, the ratio is 4:14:1 and x=4x=4.