Solveeit Logo

Question

Question: The equation of the parabola whose equation of directrix is 3x +4y-1 = 0 and focus is at (-1,3) is a...

The equation of the parabola whose equation of directrix is 3x +4y-1 = 0 and focus is at (-1,3) is ax²+bxy+cy²+56x-142y+249 = 0. Then the value of a+b+c is

A

1

B

-1

C

2

D

-2

Answer

1

Explanation

Solution

The fundamental definition of a parabola states that it is the locus of a point that is equidistant from a fixed point (the focus) and a fixed line (the directrix).

Given:

  • Focus S = (-1, 3)
  • Equation of the directrix L: 3x+4y1=03x + 4y - 1 = 0

Let P(x, y) be any point on the parabola.

  1. Distance from P to the focus (PS):
    Using the distance formula, PS=(x(1))2+(y3)2PS = \sqrt{(x - (-1))^2 + (y - 3)^2}
    PS=(x+1)2+(y3)2PS = \sqrt{(x + 1)^2 + (y - 3)^2}

  2. Distance from P to the directrix (PM):
    The perpendicular distance from a point (x0,y0)(x_0, y_0) to a line Ax+By+C=0Ax + By + C = 0 is given by the formula PM=Ax0+By0+CA2+B2PM = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.
    Here, (x0,y0)=(x,y)(x_0, y_0) = (x, y), A=3A = 3, B=4B = 4, C=1C = -1.
    PM=3x+4y132+42PM = \frac{|3x + 4y - 1|}{\sqrt{3^2 + 4^2}}
    PM=3x+4y19+16PM = \frac{|3x + 4y - 1|}{\sqrt{9 + 16}}
    PM=3x+4y125PM = \frac{|3x + 4y - 1|}{\sqrt{25}}
    PM=3x+4y15PM = \frac{|3x + 4y - 1|}{5}

  3. Equate PS and PM (PS = PM):
    (x+1)2+(y3)2=3x+4y15\sqrt{(x + 1)^2 + (y - 3)^2} = \frac{|3x + 4y - 1|}{5}

  4. Square both sides to eliminate the square root and absolute value:
    (x+1)2+(y3)2=(3x+4y15)2(x + 1)^2 + (y - 3)^2 = \left(\frac{3x + 4y - 1}{5}\right)^2
    (x2+2x+1)+(y26y+9)=(3x+4y1)225(x^2 + 2x + 1) + (y^2 - 6y + 9) = \frac{(3x + 4y - 1)^2}{25}
    x2+y2+2x6y+10=(3x)2+(4y)2+(1)2+2(3x)(4y)+2(4y)(1)+2(3x)(1)25x^2 + y^2 + 2x - 6y + 10 = \frac{(3x)^2 + (4y)^2 + (-1)^2 + 2(3x)(4y) + 2(4y)(-1) + 2(3x)(-1)}{25}
    x2+y2+2x6y+10=9x2+16y2+1+24xy8y6x25x^2 + y^2 + 2x - 6y + 10 = \frac{9x^2 + 16y^2 + 1 + 24xy - 8y - 6x}{25}

  5. Multiply both sides by 25 and rearrange the terms:
    25(x2+y2+2x6y+10)=9x2+16y2+24xy6x8y+125(x^2 + y^2 + 2x - 6y + 10) = 9x^2 + 16y^2 + 24xy - 6x - 8y + 1
    25x2+25y2+50x150y+250=9x2+16y2+24xy6x8y+125x^2 + 25y^2 + 50x - 150y + 250 = 9x^2 + 16y^2 + 24xy - 6x - 8y + 1
    Move all terms to one side to match the given general form ax2+bxy+cy2+56x142y+249=0ax^2+bxy+cy^2+56x-142y+249 = 0:
    (25x29x2)+(25y216y2)24xy+(50x(6x))+(150y(8y))+(2501)=0(25x^2 - 9x^2) + (25y^2 - 16y^2) - 24xy + (50x - (-6x)) + (-150y - (-8y)) + (250 - 1) = 0
    16x2+9y224xy+(50x+6x)+(150y+8y)+249=016x^2 + 9y^2 - 24xy + (50x + 6x) + (-150y + 8y) + 249 = 0
    16x224xy+9y2+56x142y+249=016x^2 - 24xy + 9y^2 + 56x - 142y + 249 = 0

  6. Compare with the given equation ax2+bxy+cy2+56x142y+249=0ax^2+bxy+cy^2+56x-142y+249 = 0:
    By comparing the coefficients, we get:
    a=16a = 16
    b=24b = -24
    c=9c = 9

  7. Calculate a + b + c:
    a+b+c=16+(24)+9a + b + c = 16 + (-24) + 9
    a+b+c=1624+9a + b + c = 16 - 24 + 9
    a+b+c=8+9a + b + c = -8 + 9
    a+b+c=1a + b + c = 1