Question
Question: $\lim_{x \to 1} \left( \frac{1}{x^{2024}-1} - \frac{1}{x^{2022}-1} \right)$...
limx→1(x2024−11−x2022−11)

The limit does not exist.
Solution
Let the given limit be L.
L=limx→1(x2024−11−x2022−11)
Combine the fractions:
L=limx→1(x2024−1)(x2022−1)(x2022−1)−(x2024−1)
L=limx→1(x2024−1)(x2022−1)x2022−1−x2024+1
L=limx→1(x2024−1)(x2022−1)x2022−x2024
Factor out x2022 from the numerator:
L=limx→1(x2024−1)(x2022−1)x2022(1−x2)
Factor 1−x2=(1−x)(1+x)=−(x−1)(x+1):
L=limx→1(x2024−1)(x2022−1)−x2022(x−1)(x+1)
We use the factorization an−bn=(a−b)(an−1+an−2b+⋯+abn−2+bn−1).
Let a=x and b=1. Then xn−1=(x−1)(xn−1+xn−2+⋯+x+1).
Let Pn(x)=xn−1+xn−2+⋯+x+1. Note that limx→1Pn(x)=n.
So, x2024−1=(x−1)P2024(x) and x2022−1=(x−1)P2022(x).
Substitute these into the expression for L:
L=limx→1((x−1)P2024(x))((x−1)P2022(x))−x2022(x−1)(x+1)
L=limx→1(x−1)2P2024(x)P2022(x)−x2022(x−1)(x+1)
Cancel one factor of (x−1) from the numerator and denominator:
L=limx→1(x−1)P2024(x)P2022(x)−x2022(x+1)
Let's rewrite the expression slightly:
L=limx→1P2024(x)P2022(x)−x2022(x+1)⋅x−11
As x→1, the first part of the expression approaches:
limx→1P2024(x)P2022(x)−x2022(x+1)=P2024(1)P2022(1)−(1)2022(1+1)=2024⋅2022−1(2)=2024⋅2022−2
So the limit becomes:
L=(2024⋅2022−2)⋅limx→1x−11
The limit limx→1x−11 does not exist. As x→1+, x−11→+∞. As x→1−, x−11→−∞.
Since the first factor 2024⋅2022−2 is a non-zero finite number, the overall limit does not exist.