Solveeit Logo

Question

Question: Let $S_n = \sum_{n=1}^{n} \sin^{-1}\left[\frac{(2n+1)}{n(n+1)(\sqrt{n(n+2)} + \sqrt{(n+1)(n-1)}}\rig...

Let Sn=n=1nsin1[(2n+1)n(n+1)(n(n+2)+(n+1)(n1)]S_n = \sum_{n=1}^{n} \sin^{-1}\left[\frac{(2n+1)}{n(n+1)(\sqrt{n(n+2)} + \sqrt{(n+1)(n-1)}}\right]. Find the value of 100cos(S99)100\cos(S_{99}).

Answer

1

Explanation

Solution

The problem asks us to find the value of 100cos(S99)100\cos(S_{99}) where SnS_n is a given sum involving inverse sine functions.

The sum is given by: Sn=k=1nsin1[(2k+1)k(k+1)(k(k+2)+(k+1)(k1)]S_n = \sum_{k=1}^{n} \sin^{-1}\left[\frac{(2k+1)}{k(k+1)(\sqrt{k(k+2)} + \sqrt{(k+1)(k-1)}}\right]

Let's analyze the general term inside the summation: Ak=(2k+1)k(k+1)(k(k+2)+(k+1)(k1))A_k = \frac{(2k+1)}{k(k+1)(\sqrt{k(k+2)} + \sqrt{(k+1)(k-1)})}

We can rationalize the denominator involving the square roots: 1k(k+2)+(k+1)(k1)=k(k+2)(k+1)(k1)k(k+2)(k+1)(k1)\frac{1}{\sqrt{k(k+2)} + \sqrt{(k+1)(k-1)}} = \frac{\sqrt{k(k+2)} - \sqrt{(k+1)(k-1)}}{k(k+2) - (k+1)(k-1)} =k2+2kk21k2+2k(k21)= \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{k^2+2k - (k^2-1)} =k2+2kk212k+1= \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{2k+1}

Substitute this back into the expression for AkA_k: Ak=(2k+1)k(k+1)k2+2kk212k+1A_k = \frac{(2k+1)}{k(k+1)} \cdot \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{2k+1} Ak=k2+2kk21k(k+1)A_k = \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{k(k+1)} Ak=k(k+2)k(k+1)(k+1)(k1)k(k+1)A_k = \frac{\sqrt{k(k+2)}}{k(k+1)} - \frac{\sqrt{(k+1)(k-1)}}{k(k+1)}

Now, let's try to express this in the form of sin1(x)sin1(y)\sin^{-1}(x) - \sin^{-1}(y). The formula for this difference is sin1(x)sin1(y)=sin1(x1y2y1x2)\sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}(x\sqrt{1-y^2} - y\sqrt{1-x^2}), provided the arguments are within the valid range and the result is in [π/2,π/2][-\pi/2, \pi/2].

Let x=1kx = \frac{1}{k} and y=1k+1y = \frac{1}{k+1}. Then 1x2=11k2=k21k\sqrt{1-x^2} = \sqrt{1-\frac{1}{k^2}} = \frac{\sqrt{k^2-1}}{k}. And 1y2=11(k+1)2=(k+1)21k+1=k2+2kk+1\sqrt{1-y^2} = \sqrt{1-\frac{1}{(k+1)^2}} = \frac{\sqrt{(k+1)^2-1}}{k+1} = \frac{\sqrt{k^2+2k}}{k+1}.

Now, calculate x1y2y1x2x\sqrt{1-y^2} - y\sqrt{1-x^2}: x1y2y1x2=1kk2+2kk+11k+1k21kx\sqrt{1-y^2} - y\sqrt{1-x^2} = \frac{1}{k} \cdot \frac{\sqrt{k^2+2k}}{k+1} - \frac{1}{k+1} \cdot \frac{\sqrt{k^2-1}}{k} =k2+2kk(k+1)k21k(k+1)= \frac{\sqrt{k^2+2k}}{k(k+1)} - \frac{\sqrt{k^2-1}}{k(k+1)} =k2+2kk21k(k+1)= \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{k(k+1)}

This is exactly AkA_k. So, the general term of the sum is: sin1(Ak)=sin1(1k)sin1(1k+1)\sin^{-1}(A_k) = \sin^{-1}\left(\frac{1}{k}\right) - \sin^{-1}\left(\frac{1}{k+1}\right).

Let's check the validity of the sin1\sin^{-1} difference formula. For k1k \ge 1, x=1/k(0,1]x=1/k \in (0, 1] and y=1/(k+1)(0,1/2]y=1/(k+1) \in (0, 1/2]. Both xx and yy are in [0,1][0,1]. The values sin1(1/k)\sin^{-1}(1/k) are in (0,π/2](0, \pi/2] and sin1(1/(k+1))\sin^{-1}(1/(k+1)) are in (0,π/2](0, \pi/2]. Since 1/k>1/(k+1)1/k > 1/(k+1), sin1(1/k)>sin1(1/(k+1))\sin^{-1}(1/k) > \sin^{-1}(1/(k+1)). The difference sin1(1/k)sin1(1/(k+1))\sin^{-1}(1/k) - \sin^{-1}(1/(k+1)) will be in (0,π/2](0, \pi/2]. For example, for k=1k=1, sin1(1)sin1(1/2)=π/2π/6=π/3\sin^{-1}(1) - \sin^{-1}(1/2) = \pi/2 - \pi/6 = \pi/3. Since π/3[π/2,π/2]\pi/3 \in [-\pi/2, \pi/2], the formula is valid for all terms in the sum.

Now, we can write the sum SnS_n as a telescoping series: Sn=k=1n[sin1(1k)sin1(1k+1)]S_n = \sum_{k=1}^{n} \left[\sin^{-1}\left(\frac{1}{k}\right) - \sin^{-1}\left(\frac{1}{k+1}\right)\right] Sn=(sin1(1)sin1(12))+(sin1(12)sin1(13))++(sin1(1n)sin1(1n+1))S_n = \left(\sin^{-1}(1) - \sin^{-1}\left(\frac{1}{2}\right)\right) + \left(\sin^{-1}\left(\frac{1}{2}\right) - \sin^{-1}\left(\frac{1}{3}\right)\right) + \dots + \left(\sin^{-1}\left(\frac{1}{n}\right) - \sin^{-1}\left(\frac{1}{n+1}\right)\right) All intermediate terms cancel out, leaving: Sn=sin1(1)sin1(1n+1)S_n = \sin^{-1}(1) - \sin^{-1}\left(\frac{1}{n+1}\right) Since sin1(1)=π2\sin^{-1}(1) = \frac{\pi}{2}, we have: Sn=π2sin1(1n+1)S_n = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{n+1}\right)

We need to find the value of 100cos(S99)100\cos(S_{99}). First, calculate S99S_{99}: S99=π2sin1(199+1)S_{99} = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{99+1}\right) S99=π2sin1(1100)S_{99} = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{100}\right)

Now, calculate cos(S99)\cos(S_{99}): cos(S99)=cos(π2sin1(1100))\cos(S_{99}) = \cos\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{100}\right)\right) Using the trigonometric identity cos(π2θ)=sin(θ)\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta), with θ=sin1(1100)\theta = \sin^{-1}\left(\frac{1}{100}\right): cos(S99)=sin(sin1(1100))\cos(S_{99}) = \sin\left(\sin^{-1}\left(\frac{1}{100}\right)\right) cos(S99)=1100\cos(S_{99}) = \frac{1}{100}

Finally, calculate 100cos(S99)100\cos(S_{99}): 100cos(S99)=1001100=1100\cos(S_{99}) = 100 \cdot \frac{1}{100} = 1

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Simplify the general term: The term inside the sin1\sin^{-1} function is simplified by rationalizing the denominator involving square roots. (2k+1)k(k+1)(k(k+2)+(k+1)(k1))=k2+2kk21k(k+1)\frac{(2k+1)}{k(k+1)(\sqrt{k(k+2)} + \sqrt{(k+1)(k-1)})} = \frac{\sqrt{k^2+2k} - \sqrt{k^2-1}}{k(k+1)}.
  2. Recognize the inverse trigonometric identity: The simplified term is identified as x1y2y1x2x\sqrt{1-y^2} - y\sqrt{1-x^2} where x=1kx = \frac{1}{k} and y=1k+1y = \frac{1}{k+1}. This corresponds to the expansion of sin1(x)sin1(y)\sin^{-1}(x) - \sin^{-1}(y). So, sin1[(2k+1)k(k+1)(k(k+2)+(k+1)(k1)]=sin1(1k)sin1(1k+1)\sin^{-1}\left[\frac{(2k+1)}{k(k+1)(\sqrt{k(k+2)} + \sqrt{(k+1)(k-1)}}\right] = \sin^{-1}\left(\frac{1}{k}\right) - \sin^{-1}\left(\frac{1}{k+1}\right).
  3. Form a telescoping sum: The sum SnS_n becomes a telescoping series, where most terms cancel out. Sn=k=1n[sin1(1k)sin1(1k+1)]=sin1(1)sin1(1n+1)S_n = \sum_{k=1}^{n} \left[\sin^{-1}\left(\frac{1}{k}\right) - \sin^{-1}\left(\frac{1}{k+1}\right)\right] = \sin^{-1}(1) - \sin^{-1}\left(\frac{1}{n+1}\right).
  4. Evaluate S99S_{99}: Substitute n=99n=99 into the expression for SnS_n. S99=sin1(1)sin1(1100)=π2sin1(1100)S_{99} = \sin^{-1}(1) - \sin^{-1}\left(\frac{1}{100}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{100}\right).
  5. Calculate 100cos(S99)100\cos(S_{99}): Use the identity cos(π2θ)=sin(θ)\cos(\frac{\pi}{2} - \theta) = \sin(\theta). 100cos(S99)=100cos(π2sin1(1100))=100sin(sin1(1100))=1001100=1100\cos(S_{99}) = 100\cos\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{100}\right)\right) = 100\sin\left(\sin^{-1}\left(\frac{1}{100}\right)\right) = 100 \cdot \frac{1}{100} = 1.