Solveeit Logo

Question

Question: $\frac{tan x}{3+2tan^2x}$...

tanx3+2tan2x\frac{tan x}{3+2tan^2x}

Answer

12ln(cos2x+2)+C-\frac{1}{2} \ln(\cos^2 x+2) + C

Explanation

Solution

To evaluate the integral tanx3+2tan2xdx\int \frac{\tan x}{3+2\tan^2x} dx, we can follow these steps:

  1. Rewrite the expression in terms of sinx\sin x and cosx\cos x:
    We know that tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} and tan2x=sin2xcos2x\tan^2 x = \frac{\sin^2 x}{\cos^2 x}.
    Substitute these into the integral: I=sinxcosx3+2sin2xcos2xdxI = \int \frac{\frac{\sin x}{\cos x}}{3+2\frac{\sin^2 x}{\cos^2 x}} dx

  2. Simplify the denominator:
    Find a common denominator for the terms in the denominator: 3+2sin2xcos2x=3cos2x+2sin2xcos2x3+2\frac{\sin^2 x}{\cos^2 x} = \frac{3\cos^2 x+2\sin^2 x}{\cos^2 x}

  3. Simplify the entire integrand: I=sinxcosx3cos2x+2sin2xcos2xdxI = \int \frac{\frac{\sin x}{\cos x}}{\frac{3\cos^2 x+2\sin^2 x}{\cos^2 x}} dx I=sinxcosxcos2x3cos2x+2sin2xdxI = \int \frac{\sin x}{\cos x} \cdot \frac{\cos^2 x}{3\cos^2 x+2\sin^2 x} dx I=sinxcosx3cos2x+2sin2xdxI = \int \frac{\sin x \cos x}{3\cos^2 x+2\sin^2 x} dx

  4. Simplify the denominator further using trigonometric identities:
    Use the identity sin2x=1cos2x\sin^2 x = 1-\cos^2 x: 3cos2x+2sin2x=3cos2x+2(1cos2x)3\cos^2 x+2\sin^2 x = 3\cos^2 x+2(1-\cos^2 x) =3cos2x+22cos2x= 3\cos^2 x+2-2\cos^2 x =cos2x+2= \cos^2 x+2 Now, the integral becomes: I=sinxcosxcos2x+2dxI = \int \frac{\sin x \cos x}{\cos^2 x+2} dx

  5. Use substitution:
    Let u=cos2x+2u = \cos^2 x+2.
    Differentiate uu with respect to xx: dudx=ddx(cos2x+2)\frac{du}{dx} = \frac{d}{dx}(\cos^2 x+2) dudx=2cosx(sinx)\frac{du}{dx} = 2\cos x \cdot (-\sin x) du=2sinxcosxdxdu = -2\sin x \cos x dx From this, we can write sinxcosxdx=12du\sin x \cos x dx = -\frac{1}{2} du.

  6. Substitute into the integral and evaluate: I=12duuI = \int \frac{-\frac{1}{2} du}{u} I=121uduI = -\frac{1}{2} \int \frac{1}{u} du I=12lnu+CI = -\frac{1}{2} \ln|u| + C

  7. Substitute back for uu:
    Replace uu with cos2x+2\cos^2 x+2: I=12lncos2x+2+CI = -\frac{1}{2} \ln|\cos^2 x+2| + C Since cos2x0\cos^2 x \ge 0, cos2x+2\cos^2 x+2 is always positive (specifically, 2\ge 2). Therefore, the absolute value is not necessary. I=12ln(cos2x+2)+CI = -\frac{1}{2} \ln(\cos^2 x+2) + C