Question
Question: $\frac{tan x}{3+2tan^2x}$...
3+2tan2xtanx

−21ln(cos2x+2)+C
Solution
To evaluate the integral ∫3+2tan2xtanxdx, we can follow these steps:
-
Rewrite the expression in terms of sinx and cosx:
We know that tanx=cosxsinx and tan2x=cos2xsin2x.
Substitute these into the integral: I=∫3+2cos2xsin2xcosxsinxdx -
Simplify the denominator:
Find a common denominator for the terms in the denominator: 3+2cos2xsin2x=cos2x3cos2x+2sin2x -
Simplify the entire integrand: I=∫cos2x3cos2x+2sin2xcosxsinxdx I=∫cosxsinx⋅3cos2x+2sin2xcos2xdx I=∫3cos2x+2sin2xsinxcosxdx
-
Simplify the denominator further using trigonometric identities:
Use the identity sin2x=1−cos2x: 3cos2x+2sin2x=3cos2x+2(1−cos2x) =3cos2x+2−2cos2x =cos2x+2 Now, the integral becomes: I=∫cos2x+2sinxcosxdx -
Use substitution:
Let u=cos2x+2.
Differentiate u with respect to x: dxdu=dxd(cos2x+2) dxdu=2cosx⋅(−sinx) du=−2sinxcosxdx From this, we can write sinxcosxdx=−21du. -
Substitute into the integral and evaluate: I=∫u−21du I=−21∫u1du I=−21ln∣u∣+C
-
Substitute back for u:
Replace u with cos2x+2: I=−21ln∣cos2x+2∣+C Since cos2x≥0, cos2x+2 is always positive (specifically, ≥2). Therefore, the absolute value is not necessary. I=−21ln(cos2x+2)+C