Solveeit Logo

Question

Question: \(250{\text{ mL}}\) of sodium carbonate solution contains \(2.65{\text{ g}}\) of \({\text{N}}{{\text...

250 mL250{\text{ mL}} of sodium carbonate solution contains 2.65 g2.65{\text{ g}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}. If 10 mL10{\text{ mL}} of this solution is diluted to 500 mL500{\text{ mL}}, the concentration of the diluted solution will be?
A) 0.01 M0.01{\text{ M}}
B) 0.001 M0.001{\text{ M}}
C) 0.05 M0.05{\text{ M}}
D) 0.002 M0.002{\text{ M}}

Explanation

Solution

To solve this we must know the molar mass of sodium carbonate. The molar mass of sodium carbonate i.e. Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} is 106 g/mol106{\text{ g/mol}}. First calculate the number of moles in 2.65 g2.65{\text{ g}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}. Then calculate the molarity of the solution. Then calculate the moles in 10 mL10{\text{ mL}} solution. Then using the moles calculate the molarity when the solution is diluted to 500 mL500{\text{ mL}}.

Formulae Used:
1.Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
2. Molarity(M)=Number of moles of solute(mol)Volume of solution(L){\text{Molarity}}\left( {\text{M}} \right) = \dfrac{{{\text{Number of moles of solute}}\left( {{\text{mol}}} \right)}}{{{\text{Volume of solution}}\left( {\text{L}} \right)}}

Complete step-by-step answer:
We are given that 250 mL250{\text{ mL}} of sodium carbonate solution contains 2.65 g2.65{\text{ g}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}.
We know that the number of moles is the ratio of mass to the molar mass. Thus,
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
The molar mass of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} is 106 g/mol106{\text{ g/mol}}. Thus,
Number of moles of Na2CO3=2.65 g106 g/mol=0.025 mol{\text{Number of moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} = \dfrac{{{\text{2}}{\text{.65 g}}}}{{106{\text{ g/mol}}}} = 0.025{\text{ mol}}
Thus, 2.65 g2.65{\text{ g}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} contains 0.025 mol0.025{\text{ mol}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}.
We know that molarity of a solution is the number of moles of solute per litre of solution. Thus,
Molarity(M)=Number of moles of solute(mol)Volume of solution(L){\text{Molarity}}\left( {\text{M}} \right) = \dfrac{{{\text{Number of moles of solute}}\left( {{\text{mol}}} \right)}}{{{\text{Volume of solution}}\left( {\text{L}} \right)}} …… (1)
250 mL=250×103 L250{\text{ mL}} = 250 \times {10^{ - 3}}{\text{ L}} of sodium carbonate solution contains 0.025 mol0.025{\text{ mol}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}. Thus,
Molarity=0.025 mol250×103 L=0.1 M{\text{Molarity}} = \dfrac{{0.025{\text{ mol}}}}{{250 \times {{10}^{ - 3}}{\text{ L}}}} = 0.1{\text{ M}}
Thus, the molarity of 250 mL250{\text{ mL}} of sodium carbonate solution that contains 2.65 g2.65{\text{ g}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}is 0.1 M0.1{\text{ M}}.
Now, calculate the number of moles of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} in 10 mL10{\text{ mL}} of 0.1 M0.1{\text{ M}} solution as follows:
Rearrange equation (1) for the number of moles. Thus,
Number of moles of solute(mol)=Molarity(M)×Volume of solution(L){\text{Number of moles of solute}}\left( {{\text{mol}}} \right) = {\text{Molarity}}\left( {\text{M}} \right) \times {\text{Volume of solution}}\left( {\text{L}} \right)
We have 10 mL=10×103 L10{\text{ mL}} = 10 \times {10^{ - 3}}{\text{ L}} of 0.1 M0.1{\text{ M}} solution. Thus,
Number of moles of Na2CO3=0.1 M×10×103 L=0.001 mol{\text{Number of moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} = 0.1{\text{ M}} \times 10 \times {10^{ - 3}}{\text{ L}} = 0.001{\text{ mol}}
Thus, 10 mL10{\text{ mL}} solution of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} contains 0.001 mol0.001{\text{ mol}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}.
Now, the 10 mL10{\text{ mL}} solution is diluted to 500 mL500{\text{ mL}}. Calculate the molarity of the solution using equation (1) as follows:
500 mL=500×103 L500{\text{ mL}} = 500 \times {10^{ - 3}}{\text{ L}} of sodium carbonate solution contains 0.001 mol0.001{\text{ mol}} of Na2CO3{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}. Thus,
Molarity=0.001 mol500×103 L=0.002 M{\text{Molarity}} = \dfrac{{0.001{\text{ mol}}}}{{500 \times {{10}^{ - 3}}{\text{ L}}}} = 0.002{\text{ M}}
Thus, the concentration of the diluted solution is 0.002 M0.002{\text{ M}}.

Thus, the correct option is (D) 0.002 M0.002{\text{ M}}.

Note: Molarity is used to express the concentration of solution. Remember that molarity is the number of moles of solute per litre of solution i.e. the amount of substance in a certain volume of solution. The unit of molarity is mol L1{\text{mol }}{{\text{L}}^{ - 1}} or M{\text{M}}. Molarity is also known as the molar concentration of a solution.