Question
Question: The value of $\left[\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}\right]$ (where [.] denotes greatest ...
The value of [∑n=1∞(n+1)n1] (where [.] denotes greatest integer function) is equal to

1
Solution
To find the value of [∑n=1∞(n+1)n1], we need to evaluate the sum S=∑n=1∞(n+1)n1.
We can approximate the sum using the integral test. Since f(x)=(x+1)x1 is positive, continuous, and decreasing for x≥1, we have:
∫1∞f(x)dx≤∑n=1∞f(n)≤f(1)+∫1∞f(x)dx
Evaluating the integral:
∫1∞(x+1)xdx.
Let x=t⟹x=t2⟹dx=2tdt.
When x=1,t=1. When x→∞,t→∞.
∫1∞(t2+1)t2tdt=∫1∞t2+12dt=[2arctan(t)]1∞=2(2π−4π)=2(4π)=2π.
f(1)=(1+1)11=21.
So, the bounds are:
2π≤S≤21+2π.
Numerically, π≈3.14159.
2π≈1.5708.
S≤0.5+1.5708=2.0708.
So, 1.5708≤S≤2.0708.
A more accurate approximation can be obtained by computing the first few terms of the series and then approximating the tail with an integral.
a1=211=21=0.5.
a2=(2+1)21=321=62≈61.414≈0.2357.
a3=(3+1)31=431=123≈121.732≈0.1443.
a4=(4+1)41=5⋅21=101=0.1.
Sum of first 4 terms ≈0.5+0.2357+0.1443+0.1=0.98.
∫5∞(x+1)xdx=2[arctan(x)]5∞=2(2π−arctan(5))≈2(2π−1.150)≈2(1.5708−1.150)=2(0.4208)=0.8416
S≈0.98+0.8416=1.8216
Since 1.5708≤S≤2.0708 and S≈1.8216, the greatest integer function [S] is 1.
[S]=1.