Solveeit Logo

Question

Question: The value of $\left[\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}\right]$ (where [.] denotes greatest ...

The value of [n=11(n+1)n]\left[\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}\right] (where [.] denotes greatest integer function) is equal to

Answer

1

Explanation

Solution

To find the value of [n=11(n+1)n]\left[\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}\right], we need to evaluate the sum S=n=11(n+1)nS = \sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}.

We can approximate the sum using the integral test. Since f(x)=1(x+1)xf(x) = \frac{1}{(x+1)\sqrt{x}} is positive, continuous, and decreasing for x1x \ge 1, we have:

1f(x)dxn=1f(n)f(1)+1f(x)dx\int_{1}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} f(n) \le f(1) + \int_{1}^{\infty} f(x) dx

Evaluating the integral:

1dx(x+1)x\int_{1}^{\infty} \frac{dx}{(x+1)\sqrt{x}}.

Let x=t    x=t2    dx=2tdt\sqrt{x} = t \implies x = t^2 \implies dx = 2t dt.

When x=1,t=1x=1, t=1. When x,tx \to \infty, t \to \infty.

12tdt(t2+1)t=12dtt2+1=[2arctan(t)]1=2(π2π4)=2(π4)=π2\int_{1}^{\infty} \frac{2t dt}{(t^2+1)t} = \int_{1}^{\infty} \frac{2 dt}{t^2+1} = [2 \arctan(t)]_1^\infty = 2(\frac{\pi}{2} - \frac{\pi}{4}) = 2(\frac{\pi}{4}) = \frac{\pi}{2}.

f(1)=1(1+1)1=12f(1) = \frac{1}{(1+1)\sqrt{1}} = \frac{1}{2}.

So, the bounds are:

π2S12+π2\frac{\pi}{2} \le S \le \frac{1}{2} + \frac{\pi}{2}.

Numerically, π3.14159\pi \approx 3.14159.

π21.5708\frac{\pi}{2} \approx 1.5708.

S0.5+1.5708=2.0708S \le 0.5 + 1.5708 = 2.0708.

So, 1.5708S2.07081.5708 \le S \le 2.0708.

A more accurate approximation can be obtained by computing the first few terms of the series and then approximating the tail with an integral.

a1=121=12=0.5a_1 = \frac{1}{2\sqrt{1}} = \frac{1}{2} = 0.5.

a2=1(2+1)2=132=261.41460.2357a_2 = \frac{1}{(2+1)\sqrt{2}} = \frac{1}{3\sqrt{2}} = \frac{\sqrt{2}}{6} \approx \frac{1.414}{6} \approx 0.2357.

a3=1(3+1)3=143=3121.732120.1443a_3 = \frac{1}{(3+1)\sqrt{3}} = \frac{1}{4\sqrt{3}} = \frac{\sqrt{3}}{12} \approx \frac{1.732}{12} \approx 0.1443.

a4=1(4+1)4=152=110=0.1a_4 = \frac{1}{(4+1)\sqrt{4}} = \frac{1}{5 \cdot 2} = \frac{1}{10} = 0.1.

Sum of first 4 terms 0.5+0.2357+0.1443+0.1=0.98\approx 0.5 + 0.2357 + 0.1443 + 0.1 = 0.98.

5dx(x+1)x=2[arctan(x)]5=2(π2arctan(5))2(π21.150)2(1.57081.150)=2(0.4208)=0.8416\int_{5}^{\infty} \frac{dx}{(x+1)\sqrt{x}} = 2 \left[ \arctan(\sqrt{x}) \right]_5^{\infty} = 2 \left( \frac{\pi}{2} - \arctan(\sqrt{5}) \right) \approx 2 \left( \frac{\pi}{2} - 1.150 \right) \approx 2(1.5708 - 1.150) = 2(0.4208) = 0.8416

S0.98+0.8416=1.8216S \approx 0.98 + 0.8416 = 1.8216

Since 1.5708S2.07081.5708 \le S \le 2.0708 and S1.8216S \approx 1.8216, the greatest integer function [S][S] is 1.

[S]=1[S] = 1.