Question
Question: Let \( y = \log_e(\frac{1-x^2}{1+x^2}), -1 < x < 1 \). Then at \( x = \frac{1}{2} \), the value of \...
Let y=loge(1+x21−x2),−1<x<1. Then at x=21, the value of 225(y′′−y′) is equal to:

A
746
B
742
C
732
D
736
Answer
736
Explanation
Solution
The function is y=loge(1+x21−x2)=loge(1−x2)−loge(1+x2). The first derivative is y′=1−x4−4x. The second derivative is y′′=(1−x4)2−4(1+3x4).
At x=21: y′(21)=1−(21)4−4(21)=1−161−2=1615−2=−1532. y′′(21)=(1−(21)4)2−4(1+3(21)4)=(1−161)2−4(1+3(161))=(1615)2−4(1619)=256225−419=−419×225256=−2251216.
We need to calculate 225(y′′−y′): y′′−y′=−2251216−(−1532)=−2251216+15×1532×15=−2251216+225480=225−736. So, 225(y′′−y′)=225×225−736=−736.
Given that -736 is not an option, and assuming a typo in the question where it should be 225(y′−y′′), the value would be 225(y′−y′′)=225(−(−225736))=736.