Solveeit Logo

Question

Question: Let g(x) be the inverse of an invertible function f(x) which is differentiable for all real x, then ...

Let g(x) be the inverse of an invertible function f(x) which is differentiable for all real x, then g"(f"(x)) equals

A

f(x)(f(x))3\frac{-f''(x)}{(f'(x))^{3}}

B

f(x)f(x)(f(x))3f(x)\frac{f'(x)f''(x)-(f'(x))^{3}}{f'(x)}

C

f(x)f(x)(f(x))2f(x)\frac{f'(x)f''(x)-(f'(x))^{2}}{f'(x)}

D

None of these

Answer

f(x)(f(x))3\frac{-f''(x)}{(f'(x))^{3}}

Explanation

Solution

For an invertible function f(x)f(x) with inverse g(x)g(x), we have

g(y)=1f(g(y))where y=f(x).g'(y) = \frac{1}{f'(g(y))}\quad \text{where } y = f(x).

Differentiating with respect to yy:

g(y)=f(g(y))(f(g(y)))3.g''(y) = -\frac{f''(g(y))}{\big(f'(g(y))\big)^3}.

Substitute y=f(x)y = f(x) (so g(f(x))=xg(f(x)) = x):

g(f(x))=f(x)(f(x))3.g''(f(x)) = -\frac{f''(x)}{(f'(x))^3}.

Thus, the answer is Option (A).