Question
Question: Let g(x) be the inverse of an invertible function f(x) which is differentiable for all real x, then ...
Let g(x) be the inverse of an invertible function f(x) which is differentiable for all real x, then g"(f"(x)) equals

A
(f′(x))3−f′′(x)
B
f′(x)f′(x)f′′(x)−(f′(x))3
C
f′(x)f′(x)f′′(x)−(f′(x))2
D
None of these
Answer
(f′(x))3−f′′(x)
Explanation
Solution
For an invertible function f(x) with inverse g(x), we have
g′(y)=f′(g(y))1where y=f(x).Differentiating with respect to y:
g′′(y)=−(f′(g(y)))3f′′(g(y)).Substitute y=f(x) (so g(f(x))=x):
g′′(f(x))=−(f′(x))3f′′(x).Thus, the answer is Option (A).