Question
Question: Let $\alpha$, $\beta$, $\gamma$ be distinct real numbers such that $a\alpha^2 + b\alpha + c = (sin\t...
Let α, β, γ be distinct real numbers such that aα2+bα+c=(sinθ)α2+(cosθ)α aβ2+bβ+c=(sinθ)β2+(cosθ)β aγ2+bγ+c=(sinθ)γ2+(cosθ)γ (where a, b, c ∈ R)
Find the maximum value of the expression a2+3ab+5b2a2+b2

2
Solution
The given equations are:
- aα2+bα+c=(sinθ)α2+(cosθ)α
- aβ2+bβ+c=(sinθ)β2+(cosθ)β
- aγ2+bγ+c=(sinθ)γ2+(cosθ)γ
Rearranging these equations, we get:
- (a−sinθ)α2+(b−cosθ)α+c=0
- (a−sinθ)β2+(b−cosθ)β+c=0
- (a−sinθ)γ2+(b−cosθ)γ+c=0
Let P(x)=(a−sinθ)x2+(b−cosθ)x+c.
We are given that α, β, γ are distinct real numbers and they are roots of the quadratic polynomial P(x)=0.
A non-zero quadratic polynomial can have at most two distinct real roots. Since P(x) has three distinct real roots, it must be the zero polynomial.
This implies that all its coefficients must be zero:
a−sinθ=0⟹a=sinθ
b−cosθ=0⟹b=cosθ
c=0
Now we need to find the maximum value of the expression a2+3ab+5b2a2+b2.
Substitute a=sinθ and b=cosθ into the expression:
Expression E=(sinθ)2+3(sinθ)(cosθ)+5(cosθ)2(sinθ)2+(cosθ)2
We know that sin2θ+cos2θ=1.
So, E=sin2θ+3sinθcosθ+5cos2θ1
To find the maximum value of E, we need to find the minimum value of the denominator.
Let D=sin2θ+3sinθcosθ+5cos2θ.
We can rewrite D using double angle formulas:
sin2θ=21−cos(2θ)
cos2θ=21+cos(2θ)
2sinθcosθ=sin(2θ)
Substitute these into D:
D=21−cos(2θ)+23sin(2θ)+5(21+cos(2θ))
D=21−21cos(2θ)+23sin(2θ)+25+25cos(2θ)
D=(21+25)+(−21+25)cos(2θ)+23sin(2θ)
D=3+2cos(2θ)+23sin(2θ)
To find the minimum value of D, we need to find the minimum value of the trigonometric expression 2cos(2θ)+23sin(2θ).
For an expression of the form Acosx+Bsinx, its minimum value is −A2+B2.
Here, A=2 and B=23.
So, the minimum value of 2cos(2θ)+23sin(2θ) is −22+(23)2:
−4+49=−416+9=−425=−25.
Therefore, the minimum value of D is 3−25=26−5=21.
The maximum value of the expression E occurs when the denominator D is at its minimum value:
Maximum E=minimum D1=1/21=2.