Solveeit Logo

Question

Question: Let $\alpha$, $\beta$, $\gamma$ be distinct real numbers such that $a\alpha^2 + b\alpha + c = (sin\t...

Let α\alpha, β\beta, γ\gamma be distinct real numbers such that aα2+bα+c=(sinθ)α2+(cosθ)αa\alpha^2 + b\alpha + c = (sin\theta)\alpha^2 + (cos\theta)\alpha aβ2+bβ+c=(sinθ)β2+(cosθ)βa\beta^2 + b\beta + c = (sin\theta)\beta^2 + (cos\theta)\beta aγ2+bγ+c=(sinθ)γ2+(cosθ)γa\gamma^2 + b\gamma + c = (sin\theta)\gamma^2 + (cos\theta)\gamma (where a, b, c \in R)

Find the maximum value of the expression a2+b2a2+3ab+5b2\frac{a^2 + b^2}{a^2 + 3ab + 5b^2}

Answer

2

Explanation

Solution

The given equations are:

  1. aα2+bα+c=(sinθ)α2+(cosθ)αa\alpha^2 + b\alpha + c = (\sin\theta)\alpha^2 + (\cos\theta)\alpha
  2. aβ2+bβ+c=(sinθ)β2+(cosθ)βa\beta^2 + b\beta + c = (\sin\theta)\beta^2 + (\cos\theta)\beta
  3. aγ2+bγ+c=(sinθ)γ2+(cosθ)γa\gamma^2 + b\gamma + c = (\sin\theta)\gamma^2 + (\cos\theta)\gamma

Rearranging these equations, we get:

  1. (asinθ)α2+(bcosθ)α+c=0(a - \sin\theta)\alpha^2 + (b - \cos\theta)\alpha + c = 0
  2. (asinθ)β2+(bcosθ)β+c=0(a - \sin\theta)\beta^2 + (b - \cos\theta)\beta + c = 0
  3. (asinθ)γ2+(bcosθ)γ+c=0(a - \sin\theta)\gamma^2 + (b - \cos\theta)\gamma + c = 0

Let P(x)=(asinθ)x2+(bcosθ)x+cP(x) = (a - \sin\theta)x^2 + (b - \cos\theta)x + c.

We are given that α\alpha, β\beta, γ\gamma are distinct real numbers and they are roots of the quadratic polynomial P(x)=0P(x) = 0.

A non-zero quadratic polynomial can have at most two distinct real roots. Since P(x)P(x) has three distinct real roots, it must be the zero polynomial.

This implies that all its coefficients must be zero:

asinθ=0    a=sinθa - \sin\theta = 0 \implies a = \sin\theta

bcosθ=0    b=cosθb - \cos\theta = 0 \implies b = \cos\theta

c=0c = 0

Now we need to find the maximum value of the expression a2+b2a2+3ab+5b2\frac{a^2 + b^2}{a^2 + 3ab + 5b^2}.

Substitute a=sinθa = \sin\theta and b=cosθb = \cos\theta into the expression:

Expression E=(sinθ)2+(cosθ)2(sinθ)2+3(sinθ)(cosθ)+5(cosθ)2E = \frac{(\sin\theta)^2 + (\cos\theta)^2}{(\sin\theta)^2 + 3(\sin\theta)(\cos\theta) + 5(\cos\theta)^2}

We know that sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1.

So, E=1sin2θ+3sinθcosθ+5cos2θE = \frac{1}{\sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta}

To find the maximum value of EE, we need to find the minimum value of the denominator.

Let D=sin2θ+3sinθcosθ+5cos2θD = \sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta.

We can rewrite DD using double angle formulas:

sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}

cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}

2sinθcosθ=sin(2θ)2\sin\theta\cos\theta = \sin(2\theta)

Substitute these into DD:

D=1cos(2θ)2+32sin(2θ)+5(1+cos(2θ)2)D = \frac{1 - \cos(2\theta)}{2} + \frac{3}{2}\sin(2\theta) + 5\left(\frac{1 + \cos(2\theta)}{2}\right)

D=1212cos(2θ)+32sin(2θ)+52+52cos(2θ)D = \frac{1}{2} - \frac{1}{2}\cos(2\theta) + \frac{3}{2}\sin(2\theta) + \frac{5}{2} + \frac{5}{2}\cos(2\theta)

D=(12+52)+(12+52)cos(2θ)+32sin(2θ)D = \left(\frac{1}{2} + \frac{5}{2}\right) + \left(-\frac{1}{2} + \frac{5}{2}\right)\cos(2\theta) + \frac{3}{2}\sin(2\theta)

D=3+2cos(2θ)+32sin(2θ)D = 3 + 2\cos(2\theta) + \frac{3}{2}\sin(2\theta)

To find the minimum value of DD, we need to find the minimum value of the trigonometric expression 2cos(2θ)+32sin(2θ)2\cos(2\theta) + \frac{3}{2}\sin(2\theta).

For an expression of the form Acosx+BsinxA\cos x + B\sin x, its minimum value is A2+B2-\sqrt{A^2+B^2}.

Here, A=2A = 2 and B=32B = \frac{3}{2}.

So, the minimum value of 2cos(2θ)+32sin(2θ)2\cos(2\theta) + \frac{3}{2}\sin(2\theta) is 22+(32)2-\sqrt{2^2 + \left(\frac{3}{2}\right)^2}:

4+94=16+94=254=52-\sqrt{4 + \frac{9}{4}} = -\sqrt{\frac{16+9}{4}} = -\sqrt{\frac{25}{4}} = -\frac{5}{2}.

Therefore, the minimum value of DD is 352=652=123 - \frac{5}{2} = \frac{6-5}{2} = \frac{1}{2}.

The maximum value of the expression EE occurs when the denominator DD is at its minimum value:

Maximum E=1minimum D=11/2=2E = \frac{1}{\text{minimum } D} = \frac{1}{1/2} = 2.