Solveeit Logo

Question

Question: If $\vec{a}=3\hat{i}+\hat{j}-\hat{k}$, $\vec{b}=2\hat{i}-\hat{j}+7\hat{k}$ and $\vec{c}=7\hat{i}-\ha...

If a=3i^+j^k^\vec{a}=3\hat{i}+\hat{j}-\hat{k}, b=2i^j^+7k^\vec{b}=2\hat{i}-\hat{j}+7\hat{k} and c=7i^j^+23k^\vec{c}=7\hat{i}-\hat{j}+23\hat{k} are three vectors, then which of following statements is true ?

A

a, b, c are mutually perpendicular

B

a, b and c are coplanar

C

a, b and c are non-coplanar

D

a and b are collinear

Answer

a, b and c are non-coplanar

Explanation

Solution

To determine the correct statement, we analyze each option:

  1. Check for perpendicularity: We compute the dot product of a\vec{a} and b\vec{b}: ab=(3)(2)+(1)(1)+(1)(7)=617=20\vec{a} \cdot \vec{b} = (3)(2) + (1)(-1) + (-1)(7) = 6 - 1 - 7 = -2 \neq 0. Thus, a\vec{a} and b\vec{b} are not perpendicular, so the vectors are not mutually perpendicular.

  2. Check for coplanarity: We compute the scalar triple product a(b×c)\vec{a} \cdot (\vec{b} \times \vec{c}). First, we find the cross product b×c\vec{b} \times \vec{c}:

    b×c=i^j^k^2177123=i^((1)(23)(7)(1))j^((2)(23)(7)(7))+k^((2)(1)(1)(7))=i^(23+7)j^(4649)+k^(2+7)=16i^+3j^+5k^\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 7 \\ 7 & -1 & 23 \end{vmatrix} = \hat{i}((-1)(23) - (7)(-1)) - \hat{j}((2)(23) - (7)(7)) + \hat{k}((2)(-1) - (-1)(7)) = \hat{i}(-23 + 7) - \hat{j}(46 - 49) + \hat{k}(-2 + 7) = -16\hat{i} + 3\hat{j} + 5\hat{k}

    Now, we compute the dot product of a\vec{a} and (b×c)(\vec{b} \times \vec{c}):

    a(b×c)=(3)(16)+(1)(3)+(1)(5)=48+35=500\vec{a} \cdot (\vec{b} \times \vec{c}) = (3)(-16) + (1)(3) + (-1)(5) = -48 + 3 - 5 = -50 \neq 0.

    Since the scalar triple product is non-zero, the vectors are non-coplanar.

  3. Check for collinearity: For a\vec{a} and b\vec{b} to be collinear, one must be a scalar multiple of the other. a=3i^+j^k^\vec{a} = 3\hat{i} + \hat{j} - \hat{k} and b=2i^j^+7k^\vec{b} = 2\hat{i} - \hat{j} + 7\hat{k}. There is no scalar kk such that a=kb\vec{a} = k\vec{b}, so they are not collinear.

Therefore, the correct statement is that a, b, and c are non-coplanar.