Solveeit Logo

Question

Question: If $\frac{3+i\sin\theta}{4-i\cos\theta}$, $\theta \in [0, 2\pi]$, is a real number, then an argument...

If 3+isinθ4icosθ\frac{3+i\sin\theta}{4-i\cos\theta}, θ[0,2π]\theta \in [0, 2\pi], is a real number, then an argument of sinθ+icosθ\sin\theta + i\cos\theta is

A

tan1(34)-\tan^{-1}(\frac{3}{4})

B

tan1(43)\tan^{-1}(\frac{4}{3})

C

πtan1(43)\pi - \tan^{-1}(\frac{4}{3})

D

πtan1(34)\pi - \tan^{-1}(\frac{3}{4})

Answer

πtan1(43)\pi - \tan^{-1}(\frac{4}{3})

Explanation

Solution

Let the given complex number be Z=3+isinθ4icosθZ = \frac{3+i\sin\theta}{4-i\cos\theta}. For ZZ to be a real number, its imaginary part must be zero. We find the imaginary part by rationalizing the denominator: Z=3+isinθ4icosθ×4+icosθ4+icosθZ = \frac{3+i\sin\theta}{4-i\cos\theta} \times \frac{4+i\cos\theta}{4+i\cos\theta} The numerator is: (3+isinθ)(4+icosθ)=12+3icosθ+4isinθ+i2sinθcosθ(3+i\sin\theta)(4+i\cos\theta) = 12 + 3i\cos\theta + 4i\sin\theta + i^2\sin\theta\cos\theta =12+i(3cosθ+4sinθ)sinθcosθ= 12 + i(3\cos\theta + 4\sin\theta) - \sin\theta\cos\theta =(12sinθcosθ)+i(3cosθ+4sinθ)= (12 - \sin\theta\cos\theta) + i(3\cos\theta + 4\sin\theta) The denominator is: (4icosθ)(4+icosθ)=42(icosθ)2=16i2cos2θ=16+cos2θ(4-i\cos\theta)(4+i\cos\theta) = 4^2 - (i\cos\theta)^2 = 16 - i^2\cos^2\theta = 16 + \cos^2\theta So, Z=(12sinθcosθ)+i(3cosθ+4sinθ)16+cos2θZ = \frac{(12 - \sin\theta\cos\theta) + i(3\cos\theta + 4\sin\theta)}{16 + \cos^2\theta}. The imaginary part of ZZ is Im(Z)=3cosθ+4sinθ16+cos2θ\text{Im}(Z) = \frac{3\cos\theta + 4\sin\theta}{16 + \cos^2\theta}. Since ZZ is real, Im(Z)=0\text{Im}(Z) = 0. As 16+cos2θ>016 + \cos^2\theta > 0, we must have: 3cosθ+4sinθ=03\cos\theta + 4\sin\theta = 0 4sinθ=3cosθ4\sin\theta = -3\cos\theta Dividing by cosθ\cos\theta (note that cosθ0\cos\theta \ne 0, otherwise sinθ=0\sin\theta=0, which is impossible), we get: tanθ=34\tan\theta = -\frac{3}{4} We are looking for an argument of the complex number w=sinθ+icosθw = \sin\theta + i\cos\theta. Let ϕ\phi be an argument of ww. Then tanϕ=Im(w)Re(w)=cosθsinθ=cotθ\tan\phi = \frac{\text{Im}(w)}{\text{Re}(w)} = \frac{\cos\theta}{\sin\theta} = \cot\theta. Since tanθ=3/4\tan\theta = -3/4, we have cotθ=1tanθ=13/4=43\cot\theta = \frac{1}{\tan\theta} = \frac{1}{-3/4} = -\frac{4}{3}. So, tanϕ=4/3\tan\phi = -4/3.

The condition tanθ=3/4\tan\theta = -3/4 implies that θ\theta lies in the second or fourth quadrant, since θ[0,2π]\theta \in [0, 2\pi].

Case 1: θ\theta is in the second quadrant. In this case, sinθ>0\sin\theta > 0 and cosθ<0\cos\theta < 0. From tanθ=3/4\tan\theta = -3/4, we can construct a right triangle with opposite side 3 and adjacent side 4. The hypotenuse is 32+42=5\sqrt{3^2+4^2}=5. So, sinθ=3/5\sin\theta = 3/5 and cosθ=4/5\cos\theta = -4/5. Then w=sinθ+icosθ=35+i(45)=35i45w = \sin\theta + i\cos\theta = \frac{3}{5} + i\left(-\frac{4}{5}\right) = \frac{3}{5} - i\frac{4}{5}. This complex number is in the fourth quadrant. Its principal argument is: ϕ=arctan(4/53/5)=arctan(43)=arctan(43)\phi = \arctan\left(\frac{-4/5}{3/5}\right) = \arctan\left(-\frac{4}{3}\right) = -\arctan\left(\frac{4}{3}\right)

Case 2: θ\theta is in the fourth quadrant. In this case, sinθ<0\sin\theta < 0 and cosθ>0\cos\theta > 0. So, sinθ=3/5\sin\theta = -3/5 and cosθ=4/5\cos\theta = 4/5. Then w=sinθ+icosθ=35+i(45)=35+i45w = \sin\theta + i\cos\theta = -\frac{3}{5} + i\left(\frac{4}{5}\right) = -\frac{3}{5} + i\frac{4}{5}. This complex number is in the second quadrant. Its principal argument is: ϕ=π+arctan(4/53/5)=π+arctan(43)=πarctan(43)\phi = \pi + \arctan\left(\frac{4/5}{-3/5}\right) = \pi + \arctan\left(-\frac{4}{3}\right) = \pi - \arctan\left(\frac{4}{3}\right)

The possible arguments are arctan(4/3)-\arctan(4/3) and πarctan(4/3)\pi - \arctan(4/3). Option (3) matches one of the possible arguments.