Solveeit Logo

Question

Question: If \( A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \...

If A=[133144134][xyz]=[121513]A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 13 \end{bmatrix} then the values of x, y, z respectively are

A

1, 2, 3

B

3, 2, 1

C

2, 2, 1

D

1, 1, 2

Answer

3, 2, 1

Explanation

Solution

Given the system:

x+3y+3z=12(1)x+4y+4z=15(2)x+3y+4z=13(3)\begin{aligned} x + 3y + 3z &= 12 \quad \text{(1)}\\[5mm] x + 4y + 4z &= 15 \quad \text{(2)}\\[5mm] x + 3y + 4z &= 13 \quad \text{(3)} \end{aligned}

Subtract (1) from (2):

(x+4y+4z)(x+3y+3z)=1512y+z=3(4)(x + 4y + 4z) - (x + 3y + 3z) = 15 - 12 \quad \Rightarrow \quad y + z = 3 \quad \text{(4)}

Subtract (1) from (3):

(x+3y+4z)(x+3y+3z)=1312z=1(x + 3y + 4z) - (x + 3y + 3z) = 13 - 12 \quad \Rightarrow \quad z = 1

Substitute z=1z = 1 in (4):

y+1=3y=2y + 1 = 3 \quad \Rightarrow \quad y = 2

Now substitute y=2y = 2 and z=1z = 1 in (1):

x+3(2)+3(1)=12x+6+3=12x=129=3x + 3(2) + 3(1) = 12 \quad \Rightarrow \quad x + 6 + 3 = 12 \quad \Rightarrow \quad x = 12 - 9 = 3

Thus, x=3x = 3, y=2y = 2, z=1z = 1.