Solveeit Logo

Question

Question: Four point charges A, B, C and D are placed at the four corners of a square of side a. The energy re...

Four point charges A, B, C and D are placed at the four corners of a square of side a. The energy required to take the charges C and D to infinity (they are also infinitely separated from each other) is

A

q24πϵ0a\frac{q^2}{4\pi\epsilon_0 a}

B

2q2πϵ0a\frac{2q^2}{\pi\epsilon_0 a}

C

q24πϵ0a(2+1)\frac{q^2}{4\pi\epsilon_0 a}(\sqrt{2} + 1)

D

q24πϵ0a(21)\frac{q^2}{4\pi\epsilon_0 a}(\sqrt{2} - 1)

Answer

q24πϵ0a(2+1)\frac{q^2}{4\pi\epsilon_0 a}(\sqrt{2} + 1)

Explanation

Solution

The initial potential energy of the system of four charges is the sum of the potential energies of all pairs of charges: Uinitial=i<jqiqj4πϵ0rijU_{initial} = \sum_{i<j} \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}

The charges are qA=+qq_A = +q, qB=+qq_B = +q, qC=qq_C = -q, qD=qq_D = -q. The side length of the square is aa.

The distances between the charges are: rAB=rBC=rCD=rDA=ar_{AB} = r_{BC} = r_{CD} = r_{DA} = a (adjacent sides) rAC=rBD=a2r_{AC} = r_{BD} = a\sqrt{2} (diagonals)

Uinitial=14πϵ0(qAqBrAB+qAqCrAC+qAqDrAD+qBqCrBC+qBqDrBD+qCqDrCD)U_{initial} = \frac{1}{4\pi\epsilon_0} \left( \frac{q_A q_B}{r_{AB}} + \frac{q_A q_C}{r_{AC}} + \frac{q_A q_D}{r_{AD}} + \frac{q_B q_C}{r_{BC}} + \frac{q_B q_D}{r_{BD}} + \frac{q_C q_D}{r_{CD}} \right)

Substituting the charges and distances: Uinitial=14πϵ0((+q)(+q)a+(+q)(q)a2+(+q)(q)a+(+q)(q)a+(+q)(q)a2+(q)(q)a)U_{initial} = \frac{1}{4\pi\epsilon_0} \left( \frac{(+q)(+q)}{a} + \frac{(+q)(-q)}{a\sqrt{2}} + \frac{(+q)(-q)}{a} + \frac{(+q)(-q)}{a} + \frac{(+q)(-q)}{a\sqrt{2}} + \frac{(-q)(-q)}{a} \right) Uinitial=14πϵ0(q2aq2a2q2aq2aq2a2+q2a)U_{initial} = \frac{1}{4\pi\epsilon_0} \left( \frac{q^2}{a} - \frac{q^2}{a\sqrt{2}} - \frac{q^2}{a} - \frac{q^2}{a} - \frac{q^2}{a\sqrt{2}} + \frac{q^2}{a} \right) Uinitial=q24πϵ0a(1121112+1)U_{initial} = \frac{q^2}{4\pi\epsilon_0 a} \left( 1 - \frac{1}{\sqrt{2}} - 1 - 1 - \frac{1}{\sqrt{2}} + 1 \right) Uinitial=q24πϵ0a((111+1)(12+12))U_{initial} = \frac{q^2}{4\pi\epsilon_0 a} \left( (1 - 1 - 1 + 1) - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) \right) Uinitial=q24πϵ0a(022)=q24πϵ0a(2)=2q24πϵ0aU_{initial} = \frac{q^2}{4\pi\epsilon_0 a} \left( 0 - \frac{2}{\sqrt{2}} \right) = \frac{q^2}{4\pi\epsilon_0 a} (-\sqrt{2}) = -\frac{\sqrt{2}q^2}{4\pi\epsilon_0 a}

The final state is when charges C and D are at infinity. Charges A and B remain at their original positions. The potential energy of the system in the final state is the potential energy of the remaining charges A and B. Ufinal=qAqB4πϵ0rAB=(+q)(+q)4πϵ0a=q24πϵ0aU_{final} = \frac{q_A q_B}{4\pi\epsilon_0 r_{AB}} = \frac{(+q)(+q)}{4\pi\epsilon_0 a} = \frac{q^2}{4\pi\epsilon_0 a}

The energy required to take charges C and D to infinity is the work done by an external agent, which is equal to the change in potential energy of the system: Wext=UfinalUinitialW_{ext} = U_{final} - U_{initial} Wext=q24πϵ0a(2q24πϵ0a)W_{ext} = \frac{q^2}{4\pi\epsilon_0 a} - \left( -\frac{\sqrt{2}q^2}{4\pi\epsilon_0 a} \right) Wext=q24πϵ0a+2q24πϵ0aW_{ext} = \frac{q^2}{4\pi\epsilon_0 a} + \frac{\sqrt{2}q^2}{4\pi\epsilon_0 a} Wext=q24πϵ0a(1+2)W_{ext} = \frac{q^2}{4\pi\epsilon_0 a} (1 + \sqrt{2})