Solveeit Logo

Question

Question: An emf is generated by an ac generator having 100 turn coil, of loop area 1 m². The coil rotates at ...

An emf is generated by an ac generator having 100 turn coil, of loop area 1 m². The coil rotates at a speed of one revolution per second and placed in a uniform magnetic field of 0.05 T perpendicular to the axis of rotation of the coil. The maximum value of emf is :-

A

3.14 V

B

31.4 V

C

62.8 V

D

6.28 V

Answer

31.4 V

Explanation

Solution

The maximum value of emf generated by an ac generator is given by the formula:

Emax=NBAω\mathcal{E}_{max} = NBA\omega

Where:

NN = Number of turns in the coil BB = Magnetic field strength AA = Area of the coil ω\omega = Angular speed of rotation

Given values:

Number of turns, N=100N = 100 Loop area, A=1 m2A = 1 \text{ m}^2 Magnetic field, B=0.05 TB = 0.05 \text{ T} Speed of rotation, f=1 revolution per secondf = 1 \text{ revolution per second}

First, calculate the angular speed ω\omega from the frequency ff:

ω=2πf\omega = 2\pi f

ω=2π(1 rev/s)\omega = 2\pi (1 \text{ rev/s})

ω=2π rad/s\omega = 2\pi \text{ rad/s}

Now, substitute all the values into the formula for Emax\mathcal{E}_{max}:

Emax=(100)×(0.05 T)×(1 m2)×(2π rad/s)\mathcal{E}_{max} = (100) \times (0.05 \text{ T}) \times (1 \text{ m}^2) \times (2\pi \text{ rad/s})

Emax=5×2π\mathcal{E}_{max} = 5 \times 2\pi

Emax=10π V\mathcal{E}_{max} = 10\pi \text{ V}

Using the approximate value of π3.14\pi \approx 3.14:

Emax=10×3.14\mathcal{E}_{max} = 10 \times 3.14

Emax=31.4 V\mathcal{E}_{max} = 31.4 \text{ V}

The maximum value of emf is 31.4 V.