Solveeit Logo

Question

Question: Determine the range of values of $\theta \in[0,2 \pi]$ for which the point $(\cos \theta, \sin \thet...

Determine the range of values of θ[0,2π]\theta \in[0,2 \pi] for which the point (cosθ,sinθ)(\cos \theta, \sin \theta) lies inside the triangle formed by the lines x+y=2;xy=1x+y=2; x-y=1 & 6x+2y10=06 x+2 y-\sqrt{10}=0.

Answer

(0,arctan(13)+π3)\left(0, \arctan\left(\frac{1}{3}\right)+\frac{\pi}{3}\right)

Explanation

Solution

The problem asks for the range of values of θ[0,2π]\theta \in[0,2 \pi] for which the point P(cosθ,sinθ)P(\cos \theta, \sin \theta) lies inside the triangle formed by the lines:

L1:x+y2=0L_1: x+y-2=0 L2:xy1=0L_2: x-y-1=0 L3:6x+2y10=0L_3: 6x+2y-\sqrt{10}=0

For a point to lie inside a triangle, it must satisfy certain conditions with respect to each line. The standard method is to check the sign of the expression Ax+By+CAx+By+C for the point with respect to each line, ensuring that it is the same as the sign for the third vertex (the vertex not lying on that line).

Let's find the vertices of the triangle:

  1. Vertex A (L1L2L_1 \cap L_2): x+y=2x+y=2 xy=1x-y=1 Adding the equations gives 2x=3x=3/22x=3 \Rightarrow x=3/2. Subtracting the second from the first gives 2y=1y=1/22y=1 \Rightarrow y=1/2. So, A=(3/2,1/2)A=(3/2, 1/2).

  2. Vertex B (L1L3L_1 \cap L_3): x+y=2y=2xx+y=2 \Rightarrow y=2-x 6x+2y=106x+2y=\sqrt{10} Substitute yy: 6x+2(2x)=106x+42x=104x=104x=(104)/46x+2(2-x)=\sqrt{10} \Rightarrow 6x+4-2x=\sqrt{10} \Rightarrow 4x=\sqrt{10}-4 \Rightarrow x=(\sqrt{10}-4)/4. y=2(104)/4=(810+4)/4=(1210)/4y=2-(\sqrt{10}-4)/4 = (8-\sqrt{10}+4)/4 = (12-\sqrt{10})/4. So, B=((104)/4,(1210)/4)B=((\sqrt{10}-4)/4, (12-\sqrt{10})/4).

  3. Vertex C (L2L3L_2 \cap L_3): xy=1y=x1x-y=1 \Rightarrow y=x-1 6x+2y=106x+2y=\sqrt{10} Substitute yy: 6x+2(x1)=106x+2x2=108x=10+2x=(10+2)/86x+2(x-1)=\sqrt{10} \Rightarrow 6x+2x-2=\sqrt{10} \Rightarrow 8x=\sqrt{10}+2 \Rightarrow x=(\sqrt{10}+2)/8. y=(10+2)/81=(106)/8y=(\sqrt{10}+2)/8 - 1 = (\sqrt{10}-6)/8. So, C=((10+2)/8,(106)/8)C=((\sqrt{10}+2)/8, (\sqrt{10}-6)/8).

Now, we check the conditions for P(cosθ,sinθ)P(\cos \theta, \sin \theta) to be inside the triangle:

Condition 1: For L1:x+y2=0L_1: x+y-2=0. The third vertex is C=((10+2)/8,(106)/8)C=((\sqrt{10}+2)/8, (\sqrt{10}-6)/8). Evaluate L1(C)=(10+2)/8+(106)/82=(2104)/82=(102)/42=(1010)/4L_1(C) = (\sqrt{10}+2)/8 + (\sqrt{10}-6)/8 - 2 = (2\sqrt{10}-4)/8 - 2 = (\sqrt{10}-2)/4 - 2 = (\sqrt{10}-10)/4. Since 103.16\sqrt{10} \approx 3.16, L1(C)<0L_1(C) < 0. So, for P(cosθ,sinθ)P(\cos \theta, \sin \theta) to be on the same side of L1L_1 as CC, we must have: cosθ+sinθ2<0\cos \theta + \sin \theta - 2 < 0. The maximum value of cosθ+sinθ\cos \theta + \sin \theta is 12+12=2\sqrt{1^2+1^2} = \sqrt{2}. So, cosθ+sinθ2221.4142=0.586<0\cos \theta + \sin \theta - 2 \le \sqrt{2}-2 \approx 1.414-2 = -0.586 < 0. This condition is always true for any point on the unit circle.

Condition 2: For L2:xy1=0L_2: x-y-1=0. The third vertex is B=((104)/4,(1210)/4)B=((\sqrt{10}-4)/4, (12-\sqrt{10})/4). Evaluate L2(B)=(104)/4(1210)/41=(21016)/41=(108)/21=(1010)/2L_2(B) = (\sqrt{10}-4)/4 - (12-\sqrt{10})/4 - 1 = (2\sqrt{10}-16)/4 - 1 = (\sqrt{10}-8)/2 - 1 = (\sqrt{10}-10)/2. Since 103.16\sqrt{10} \approx 3.16, L2(B)<0L_2(B) < 0. So, for P(cosθ,sinθ)P(\cos \theta, \sin \theta) to be on the same side of L2L_2 as BB, we must have: cosθsinθ1<0cosθsinθ<1\cos \theta - \sin \theta - 1 < 0 \Rightarrow \cos \theta - \sin \theta < 1. We can write cosθsinθ=2cos(θ+π/4)\cos \theta - \sin \theta = \sqrt{2} \cos(\theta + \pi/4). So, 2cos(θ+π/4)<1cos(θ+π/4)<1/2\sqrt{2} \cos(\theta + \pi/4) < 1 \Rightarrow \cos(\theta + \pi/4) < 1/\sqrt{2}. Let α=θ+π/4\alpha = \theta + \pi/4. Since θ[0,2π]\theta \in [0, 2\pi], α[π/4,2π+π/4]=[π/4,9π/4]\alpha \in [\pi/4, 2\pi + \pi/4] = [\pi/4, 9\pi/4]. For cosα<1/2\cos \alpha < 1/\sqrt{2} in the interval [π/4,9π/4][\pi/4, 9\pi/4], we have: π/4<α<7π/4\pi/4 < \alpha < 7\pi/4. Substituting back α=θ+π/4\alpha = \theta + \pi/4: π/4<θ+π/4<7π/4\pi/4 < \theta + \pi/4 < 7\pi/4 0<θ<3π/20 < \theta < 3\pi/2.

Condition 3: For L3:6x+2y10=0L_3: 6x+2y-\sqrt{10}=0. The third vertex is A=(3/2,1/2)A=(3/2, 1/2). Evaluate L3(A)=6(3/2)+2(1/2)10=9+110=1010L_3(A) = 6(3/2) + 2(1/2) - \sqrt{10} = 9+1-\sqrt{10} = 10-\sqrt{10}. Since 103.16\sqrt{10} \approx 3.16, L3(A)>0L_3(A) > 0. So, for P(cosθ,sinθ)P(\cos \theta, \sin \theta) to be on the same side of L3L_3 as AA, we must have: 6cosθ+2sinθ10>06cosθ+2sinθ>106\cos \theta + 2\sin \theta - \sqrt{10} > 0 \Rightarrow 6\cos \theta + 2\sin \theta > \sqrt{10}. We can write 6cosθ+2sinθ=62+22cos(θϕ)=36+4cos(θϕ)=40cos(θϕ)=210cos(θϕ)6\cos \theta + 2\sin \theta = \sqrt{6^2+2^2} \cos(\theta - \phi) = \sqrt{36+4} \cos(\theta - \phi) = \sqrt{40} \cos(\theta - \phi) = 2\sqrt{10} \cos(\theta - \phi), where tanϕ=2/6=1/3\tan \phi = 2/6 = 1/3. So, 210cos(θϕ)>10cos(θϕ)>1/22\sqrt{10} \cos(\theta - \phi) > \sqrt{10} \Rightarrow \cos(\theta - \phi) > 1/2. Let β=θϕ\beta = \theta - \phi. We need cosβ>1/2\cos \beta > 1/2. We know ϕ=arctan(1/3)\phi = \arctan(1/3). Since 0<1/3<1/30 < 1/3 < 1/\sqrt{3}, we have 0<ϕ<π/60 < \phi < \pi/6. So, ϕ0.322\phi \approx 0.322 radians (18.4318.43^\circ). Since θ[0,2π]\theta \in [0, 2\pi], β=θϕ[ϕ,2πϕ]\beta = \theta - \phi \in [-\phi, 2\pi-\phi]. For cosβ>1/2\cos \beta > 1/2, we have β(π/3,π/3)\beta \in (-\pi/3, \pi/3) (modulo 2π2\pi). So, π/3<θϕ<π/3-\pi/3 < \theta - \phi < \pi/3. ϕπ/3<θ<ϕ+π/3\phi - \pi/3 < \theta < \phi + \pi/3. Numerically, π/31.047\pi/3 \approx 1.047 radians. So, 0.3221.047<θ<0.322+1.0470.322 - 1.047 < \theta < 0.322 + 1.047. 0.725<θ<1.369-0.725 < \theta < 1.369. Considering θ[0,2π]\theta \in [0, 2\pi], this interval becomes: 0θ<ϕ+π/30 \le \theta < \phi + \pi/3.

Combining the conditions:

  1. 0<θ<3π/20 < \theta < 3\pi/2
  2. 0θ<ϕ+π/30 \le \theta < \phi + \pi/3

We need to find the intersection of these two ranges. The final range for θ\theta is 0<θ<min(3π/2,ϕ+π/3)0 < \theta < \min(3\pi/2, \phi + \pi/3). We know ϕ<π/6\phi < \pi/6. So ϕ+π/3<π/6+π/3=π/2\phi + \pi/3 < \pi/6 + \pi/3 = \pi/2. Since π/2<3π/2\pi/2 < 3\pi/2, the intersection is 0<θ<ϕ+π/30 < \theta < \phi + \pi/3.

The range of values for θ\theta is (0,arctan(1/3)+π/3)(0, \arctan(1/3) + \pi/3).