Solveeit Logo

Question

Question: The value of $\frac{\sum\limits_{r=1}^{n} \frac{1}{r}}{\sum\limits_{k=1}^{n}\frac{k}{(2n-2k+1)(2n-k+...

The value of r=1n1rk=1nk(2n2k+1)(2nk+1)\frac{\sum\limits_{r=1}^{n} \frac{1}{r}}{\sum\limits_{k=1}^{n}\frac{k}{(2n-2k+1)(2n-k+1)}} is

Answer

2

Explanation

Solution

Solution:

We are given

S=r=1n1rk=1nk(2n2k+1)(2nk+1).S = \frac{\sum_{r=1}^{n} \frac{1}{r}}{\sum_{k=1}^{n}\frac{k}{(2n-2k+1)(2n-k+1)}}.

Let

Hn=r=1n1r.H_n=\sum_{r=1}^{n}\frac{1}{r}.

Focus on the denominator:

D=k=1nk(2n2k+1)(2nk+1).D = \sum_{k=1}^{n}\frac{k}{(2n-2k+1)(2n-k+1)}.

Step 1. Replace kk by nj,n-j, where j=0,1,2,,n1.j = 0,1,2,\ldots,n-1. Then:

2n2k+1=2n2(nj)+1=2j+1,2n-2k+1 = 2n-2(n-j)+1 = 2j+1, 2nk+1=2n(nj)+1=n+j+1.2n-k+1 = 2n-(n-j)+1 = n+j+1.

Thus,

D=j=0n1nj(2j+1)(n+j+1).D = \sum_{j=0}^{n-1}\frac{n-j}{(2j+1)(n+j+1)}.

Step 2. Write the general term in partial fractions:

nj(2j+1)(n+j+1)=A2j+1+Bn+j+1.\frac{n-j}{(2j+1)(n+j+1)} = \frac{A}{2j+1}+\frac{B}{n+j+1}.

Multiplying both sides by (2j+1)(n+j+1)(2j+1)(n+j+1) gives:

nj=A(n+j+1)+B(2j+1).n-j = A(n+j+1)+B(2j+1).

Comparing coefficients:

  • Coefficient of jj: A+2B=1A+2B=-1.
  • Constant term: A(n+1)+B=nA(n+1)+B = n.

Solving A+2B=1A+2B=-1 gives A=12B.A = -1-2B. Substitute into the constant term:

(12B)(n+1)+B=n(n+1)2B(n+1)+B=n,(-1-2B)(n+1)+B = n \quad \Longrightarrow \quad -(n+1)-2B(n+1)+B = n, (n+1)B(2n+21)=n,-(n+1)-B(2n+2-1) = n, (n+1)(2n+1)B=n.-(n+1)- (2n+1)B = n.

Thus,

(2n+1)B=(n+1+n)=(2n+1)B=1.(2n+1)B = - (n+1+n) = - (2n+1) \quad \Longrightarrow \quad B=-1.

Then, A=12(1)=1.A=-1-2(-1)=1.

So,

nj(2j+1)(n+j+1)=12j+11n+j+1.\frac{n-j}{(2j+1)(n+j+1)} = \frac{1}{2j+1} - \frac{1}{n+j+1}.

Step 3. Substitute back in the sum:

D=j=0n1[12j+11n+j+1]=j=0n112j+1S1j=0n11n+j+1S2.D = \sum_{j=0}^{n-1}\left[\frac{1}{2j+1} - \frac{1}{n+j+1}\right] = \underbrace{\sum_{j=0}^{n-1}\frac{1}{2j+1}}_{S_1} - \underbrace{\sum_{j=0}^{n-1}\frac{1}{n+j+1}}_{S_2}.

Note that S2=m=n+12n1m=H2nHn.S_2 = \sum_{m=n+1}^{2n}\frac{1}{m}=H_{2n}-H_{n}.

Also, S1S_1 is the sum of reciprocals of the first nn odd numbers:

S1=11+13++12n1=H2n12Hn,S_1 = \frac{1}{1}+\frac{1}{3}+\cdots+\frac{1}{2n-1} = H_{2n} - \frac{1}{2}H_n,

since the sum of reciprocals for even numbers (up to 2n2n) is 12Hn\frac{1}{2}H_n.

Thus,

D=(H2nHn2)(H2nHn)=HnHn2=Hn2.D = \left(H_{2n}-\frac{H_n}{2}\right) - (H_{2n}-H_n)= H_n -\frac{H_n}{2} = \frac{H_n}{2}.

Step 4. Now, the overall expression becomes:

S=HnHn2=2.S = \frac{H_n}{\frac{H_n}{2}} = 2.