Solveeit Logo

Question

Question: One mole of an ideal monoatomic gas undergoes expansion along a straight line on P–V curve from init...

One mole of an ideal monoatomic gas undergoes expansion along a straight line on P–V curve from initial state A(3L, 8 atm) to final state B(7.5 L, 2 atm). Calculate q for the above process in L atm

Answer

9.0 L atm

Explanation

Solution

The problem asks to calculate the heat (q) for a process involving one mole of an ideal monoatomic gas expanding along a straight line on a P-V curve.

1. Calculate the work done (w) by the system: The process is a straight line on the P-V curve from state A(3L, 8 atm) to state B(7.5 L, 2 atm). The work done by the system (wby_systemw_{by\_system}) is the area under the P-V curve. This area forms a trapezium. The formula for the area of a trapezium is 12×(sum of parallel sides)×height\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}. Here, the parallel sides are the initial and final pressures (P1=8 atmP_1 = 8 \text{ atm}, P2=2 atmP_2 = 2 \text{ atm}), and the height is the change in volume (V2V1=7.5 L3 LV_2 - V_1 = 7.5 \text{ L} - 3 \text{ L}).

wby_system=12(P1+P2)(V2V1)w_{by\_system} = \frac{1}{2}(P_1 + P_2)(V_2 - V_1) wby_system=12(8 atm+2 atm)(7.5 L3 L)w_{by\_system} = \frac{1}{2}(8 \text{ atm} + 2 \text{ atm})(7.5 \text{ L} - 3 \text{ L}) wby_system=12(10 atm)(4.5 L)w_{by\_system} = \frac{1}{2}(10 \text{ atm})(4.5 \text{ L}) wby_system=5×4.5 L atmw_{by\_system} = 5 \times 4.5 \text{ L atm} wby_system=22.5 L atmw_{by\_system} = 22.5 \text{ L atm}

2. Calculate the change in internal energy (ΔU\Delta U): For an ideal gas, the change in internal energy depends only on the change in temperature: ΔU=nCvΔT\Delta U = nC_v\Delta T. For a monoatomic ideal gas, the molar heat capacity at constant volume (CvC_v) is 32R\frac{3}{2}R. So, ΔU=n32RΔT=32(nRT2nRT1)\Delta U = n \frac{3}{2}R\Delta T = \frac{3}{2} (nR T_2 - nR T_1). Using the ideal gas law, PV=nRTPV = nRT, we can substitute nRTnRT with PVPV: ΔU=32(P2V2P1V1)\Delta U = \frac{3}{2}(P_2V_2 - P_1V_1)

Calculate the initial and final PV products: P1V1=8 atm×3 L=24 L atmP_1V_1 = 8 \text{ atm} \times 3 \text{ L} = 24 \text{ L atm} P2V2=2 atm×7.5 L=15 L atmP_2V_2 = 2 \text{ atm} \times 7.5 \text{ L} = 15 \text{ L atm}

Now, calculate ΔU\Delta U: ΔU=32(15 L atm24 L atm)\Delta U = \frac{3}{2}(15 \text{ L atm} - 24 \text{ L atm}) ΔU=32(9 L atm)\Delta U = \frac{3}{2}(-9 \text{ L atm}) ΔU=13.5 L atm\Delta U = -13.5 \text{ L atm}

3. Apply the First Law of Thermodynamics: The First Law of Thermodynamics states that ΔU=qwby_system\Delta U = q - w_{by\_system} (where wby_systemw_{by\_system} is work done by the system). Rearranging to find q: q=ΔU+wby_systemq = \Delta U + w_{by\_system}

Substitute the calculated values of ΔU\Delta U and wby_systemw_{by\_system}: q=13.5 L atm+22.5 L atmq = -13.5 \text{ L atm} + 22.5 \text{ L atm} q=9.0 L atmq = 9.0 \text{ L atm}

The positive value of q indicates that heat is absorbed by the system during the process.