Solveeit Logo

Question

Question: Let $S = \frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \frac{1}{\sqrt{9}+\sqrt{11}} + ...

Let S=11+3+15+7+19+11+...+19997+9999S = \frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \frac{1}{\sqrt{9}+\sqrt{11}} + ... + \frac{1}{\sqrt{9997}+\sqrt{9999}}, then

A

S < 24

B

S > 24

C

S > 18

D

S < 18

Answer

S > 24

Explanation

Solution

The given sum is S=11+3+15+7+19+11+...+19997+9999S = \frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \frac{1}{\sqrt{9}+\sqrt{11}} + ... + \frac{1}{\sqrt{9997}+\sqrt{9999}}. The general term of the series is Tn=14n3+4n1T_n = \frac{1}{\sqrt{4n-3}+\sqrt{4n-1}}. There are 2500 terms in the sum.

First, rationalize the general term TnT_n: Tn=14n3+4n1=4n14n3(4n1+4n3)(4n14n3)=4n14n3(4n1)(4n3)=4n14n32T_n = \frac{1}{\sqrt{4n-3}+\sqrt{4n-1}} = \frac{\sqrt{4n-1}-\sqrt{4n-3}}{(\sqrt{4n-1}+\sqrt{4n-3})(\sqrt{4n-1}-\sqrt{4n-3})} = \frac{\sqrt{4n-1}-\sqrt{4n-3}}{(4n-1)-(4n-3)} = \frac{\sqrt{4n-1}-\sqrt{4n-3}}{2}

So the sum SS can be written as: S=n=125004n14n32S = \sum_{n=1}^{2500} \frac{\sqrt{4n-1}-\sqrt{4n-3}}{2}

Let f(x)=xf(x) = \sqrt{x}. By the Mean Value Theorem, for a<ba < b, there exists a c(a,b)c \in (a,b) such that f(b)f(a)ba=f(c)\frac{f(b)-f(a)}{b-a} = f'(c). Here, let a=4n3a = 4n-3 and b=4n1b = 4n-1. Then ba=2b-a = 2. So, 4n14n32=f(cn)\frac{\sqrt{4n-1}-\sqrt{4n-3}}{2} = f'(c_n) for some cn(4n3,4n1)c_n \in (4n-3, 4n-1). Since f(x)=12xf'(x) = \frac{1}{2\sqrt{x}}, we have Tn=12cnT_n = \frac{1}{2\sqrt{c_n}}. Since 4n3<cn<4n14n-3 < c_n < 4n-1, we can establish bounds for TnT_n: 124n1<Tn<124n3\frac{1}{2\sqrt{4n-1}} < T_n < \frac{1}{2\sqrt{4n-3}}.

Summing these inequalities from n=1n=1 to n=2500n=2500: n=12500124n1<S<n=12500124n3\sum_{n=1}^{2500} \frac{1}{2\sqrt{4n-1}} < S < \sum_{n=1}^{2500} \frac{1}{2\sqrt{4n-3}}

Using integral approximation, we find that 24.57075<S<25.2462524.57075 < S < 25.24625.

From this range, we can conclude that S>24S > 24.