Question
Question: $\int \frac{\sin 2x + \sin 5x - \sin 3x}{\cos x + 1 - 2\sin^2 2x}dx$...
∫cosx+1−2sin22xsin2x+sin5x−sin3xdx

Answer
-2cos x + C
Explanation
Solution
Step 1. Simplify the Numerator
We start with the numerator:
sin2x+sin5x−sin3x.Combine sin2x−sin3x using the identity:
sinA−sinB=2cos2A+Bsin2A−B,with A=2x and B=3x:
sin2x−sin3x=2cos22x+3xsin22x−3x=2cos25xsin(−2x)=−2cos25xsin2x.Thus, the numerator becomes:
sin5x−2cos25xsin2x.Now, write sin5x in terms of half-angles:
sin5x=2sin25xcos25x.So,
sin5x−2cos25xsin2x=2cos25x[sin25x−sin2x].Use the identity again on sin25x−sin2x:
sinA−sinB=2cos2A+Bsin2A−B,with A=25x,B=2x, we get:
sin25x−sin2x=2cos25x/2+x/2sin25x/2−x/2=2cos23xsinx.Thus, the numerator simplifies to:
2cos25x⋅2cos23xsinx=4sinxcos25xcos23x.Step 2. Simplify the Denominator
The denominator is:
cosx+1−2sin22x.Rewrite 2sin22x using the identity:
sin2θ=21−cos2θ,with θ=2x:
2sin22x=2⋅21−cos4x=1−cos4x.Thus,
cosx+1−2sin22x=cosx+1−(1−cos4x)=cosx+cos4x.Now, use the sum-to-product formula:
cosA+cosB=2cos2A+Bcos2A−B,with A=x and B=4x:
cosx+cos4x=2cos2x+4xcos2x−4x=2cos25xcos(−23x)=2cos25xcos23x.Step 3. Write the Integral
Substitute the simplified numerator and denominator into the integral:
∫2cos25xcos23x4sinxcos25xcos23xdx=∫24sinxdx=∫2sinxdx.Step 4. Integrate
∫2sinxdx=−2cosx+C.