Solveeit Logo

Question

Question: $\int \frac{\sin 2x + \sin 5x - \sin 3x}{\cos x + 1 - 2\sin^2 2x}dx$...

sin2x+sin5xsin3xcosx+12sin22xdx\int \frac{\sin 2x + \sin 5x - \sin 3x}{\cos x + 1 - 2\sin^2 2x}dx

Answer

-2cos x + C

Explanation

Solution

Step 1. Simplify the Numerator

We start with the numerator:

sin2x+sin5xsin3x.\sin 2x + \sin 5x - \sin 3x.

Combine sin2xsin3x\sin 2x - \sin 3x using the identity:

sinAsinB=2cosA+B2sinAB2,\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2},

with A=2xA=2x and B=3xB=3x:

sin2xsin3x=2cos2x+3x2sin2x3x2=2cos5x2sin(x2)=2cos5x2sinx2.\sin 2x - \sin 3x = 2\cos\frac{2x+3x}{2}\sin\frac{2x-3x}{2} = 2\cos\frac{5x}{2}\sin\left(-\frac{x}{2}\right) = -2\cos\frac{5x}{2}\sin\frac{x}{2}.

Thus, the numerator becomes:

sin5x2cos5x2sinx2.\sin 5x -2\cos\frac{5x}{2}\sin\frac{x}{2}.

Now, write sin5x\sin 5x in terms of half-angles:

sin5x=2sin5x2cos5x2.\sin 5x = 2\sin\frac{5x}{2}\cos\frac{5x}{2}.

So,

sin5x2cos5x2sinx2=2cos5x2[sin5x2sinx2].\sin 5x -2\cos\frac{5x}{2}\sin\frac{x}{2} = 2\cos\frac{5x}{2}\left[\sin\frac{5x}{2} -\sin\frac{x}{2}\right].

Use the identity again on sin5x2sinx2\sin\frac{5x}{2} -\sin\frac{x}{2}:

sinAsinB=2cosA+B2sinAB2,\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2},

with A=5x2,  B=x2A=\frac{5x}{2},\; B=\frac{x}{2}, we get:

sin5x2sinx2=2cos5x/2+x/22sin5x/2x/22=2cos3x2sinx.\sin\frac{5x}{2}-\sin\frac{x}{2} = 2\cos\frac{5x/2+x/2}{2}\sin\frac{5x/2-x/2}{2} = 2\cos\frac{3x}{2}\sin x.

Thus, the numerator simplifies to:

2cos5x22cos3x2sinx=4sinxcos5x2cos3x2.2\cos\frac{5x}{2}\cdot 2\cos\frac{3x}{2}\sin x = 4\sin x \cos\frac{5x}{2}\cos\frac{3x}{2}.

Step 2. Simplify the Denominator

The denominator is:

cosx+12sin22x.\cos x + 1 - 2\sin^2 2x.

Rewrite 2sin22x2\sin^2 2x using the identity:

sin2θ=1cos2θ2,\sin^2\theta = \frac{1-\cos 2\theta}{2},

with θ=2x\theta=2x:

2sin22x=21cos4x2=1cos4x.2\sin^2 2x = 2\cdot\frac{1-\cos4x}{2} = 1-\cos4x.

Thus,

cosx+12sin22x=cosx+1(1cos4x)=cosx+cos4x.\cos x+1-2\sin^2 2x = \cos x + 1 - (1-\cos4x) = \cos x + \cos4x.

Now, use the sum-to-product formula:

cosA+cosB=2cosA+B2cosAB2,\cos A+\cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2},

with A=xA=x and B=4xB=4x:

cosx+cos4x=2cosx+4x2cosx4x2=2cos5x2cos(3x2)=2cos5x2cos3x2.\cos x+\cos4x = 2\cos\frac{x+4x}{2}\cos\frac{x-4x}{2} = 2\cos\frac{5x}{2}\cos\left(-\frac{3x}{2}\right) = 2\cos\frac{5x}{2}\cos\frac{3x}{2}.

Step 3. Write the Integral

Substitute the simplified numerator and denominator into the integral:

4sinxcos5x2cos3x22cos5x2cos3x2dx=4sinx2dx=2sinxdx.\int \frac{4\sin x \cos\frac{5x}{2}\cos\frac{3x}{2}}{2\cos\frac{5x}{2}\cos\frac{3x}{2}}\,dx = \int \frac{4\sin x}{2}\,dx = \int 2\sin x\,dx.

Step 4. Integrate

2sinxdx=2cosx+C.\int 2\sin x\,dx = -2\cos x + C.