Solveeit Logo

Question

Question: If $Re(\frac{z-1}{2z+i})=1$, where z = x + iy, then the point (x, y) lies on a...

If Re(z12z+i)=1Re(\frac{z-1}{2z+i})=1, where z = x + iy, then the point (x, y) lies on a

A

circle whose diameter is 52\frac{\sqrt{5}}{2}.

B

straight line whose slope is 32\frac{3}{2}.

C

circle whose centre is at (12,32)(-\frac{1}{2}, -\frac{3}{2}).

D

straight line whose slope is 23-\frac{2}{3}.

Answer

circle whose diameter is 52\frac{\sqrt{5}}{2}.

Explanation

Solution

Let z=x+iyz = x+iy. The given condition is Re(z12z+i)=1Re(\frac{z-1}{2z+i})=1. Substituting z=x+iyz = x+iy: z12z+i=(x1)+iy2x+i(2y+1)\frac{z-1}{2z+i} = \frac{(x-1)+iy}{2x+i(2y+1)} Multiply by the conjugate of the denominator: ((x1)+iy)(2xi(2y+1))(2x)2+(2y+1)2=(x1)(2x)+y(2y+1)+i[y(2x)(x1)(2y+1)]4x2+(2y+1)2\frac{((x-1)+iy)(2x-i(2y+1))}{(2x)^2+(2y+1)^2} = \frac{(x-1)(2x) + y(2y+1) + i[y(2x) - (x-1)(2y+1)]}{4x^2+(2y+1)^2} The real part is 2x22x+2y2+y4x2+(2y+1)2\frac{2x^2-2x+2y^2+y}{4x^2+(2y+1)^2}. Given Re(z12z+i)=1Re(\frac{z-1}{2z+i})=1: 2x22x+2y2+y4x2+4y2+4y+1=1\frac{2x^2-2x+2y^2+y}{4x^2+4y^2+4y+1} = 1 2x22x+2y2+y=4x2+4y2+4y+12x^2-2x+2y^2+y = 4x^2+4y^2+4y+1 2x2+2x+2y2+3y+1=02x^2+2x+2y^2+3y+1 = 0 Dividing by 2: x2+x+y2+32y+12=0x^2+x+y^2+\frac{3}{2}y+\frac{1}{2} = 0 Completing the square: (x+12)214+(y+34)2916+12=0\left(x+\frac{1}{2}\right)^2 - \frac{1}{4} + \left(y+\frac{3}{4}\right)^2 - \frac{9}{16} + \frac{1}{2} = 0 (x+12)2+(y+34)2=14+91612=4+9816=516\left(x+\frac{1}{2}\right)^2 + \left(y+\frac{3}{4}\right)^2 = \frac{1}{4} + \frac{9}{16} - \frac{1}{2} = \frac{4+9-8}{16} = \frac{5}{16} This is the equation of a circle with center (12,34)(-\frac{1}{2}, -\frac{3}{4}) and radius r=516=54r = \sqrt{\frac{5}{16}} = \frac{\sqrt{5}}{4}. The diameter is 2r=2×54=522r = 2 \times \frac{\sqrt{5}}{4} = \frac{\sqrt{5}}{2}. The locus is a circle with diameter 52\frac{\sqrt{5}}{2}.