Solveeit Logo

Question

Question: If $Re(\frac{z-1}{2z+i}) = 1$, where $z = x + iy$, then the point (x, y) lies on a...

If Re(z12z+i)=1Re(\frac{z-1}{2z+i}) = 1, where z=x+iyz = x + iy, then the point (x, y) lies on a

A

circle whose diameter is 52\frac{\sqrt{5}}{2}.

B

straight line whose slope is 32\frac{3}{2}.

C

circle whose centre is at (12,32)(-\frac{1}{2}, -\frac{3}{2}).

D

straight line whose slope is 23-\frac{2}{3}.

Answer

(1) circle whose diameter is 52\frac{\sqrt{5}}{2}.

Explanation

Solution

Let w=z12z+iw = \frac{z-1}{2z+i}. We are given Re(w)=1Re(w) = 1. Substituting z=x+iyz = x+iy: w=(x1)+iy2x+i(2y+1)w = \frac{(x-1) + iy}{2x + i(2y+1)} Multiply by the conjugate of the denominator: w=((x1)+iy)(2xi(2y+1))(2x)2+(2y+1)2w = \frac{((x-1) + iy)(2x - i(2y+1))}{(2x)^2 + (2y+1)^2} The numerator is: (2x22x)i(x1)(2y+1)+i(2xy)+y(2y+1)(2x^2 - 2x) - i(x-1)(2y+1) + i(2xy) + y(2y+1) =(2x22x+2y2+y)+i(2xyx+2y+1+2xy)= (2x^2 - 2x + 2y^2 + y) + i(-2xy - x + 2y + 1 + 2xy) =(2x22x+2y2+y)+i(x+2y+1)= (2x^2 - 2x + 2y^2 + y) + i(-x + 2y + 1) The denominator is: 4x2+(4y2+4y+1)=4x2+4y2+4y+14x^2 + (4y^2 + 4y + 1) = 4x^2 + 4y^2 + 4y + 1 So, Re(w)=2x22x+2y2+y4x2+4y2+4y+1Re(w) = \frac{2x^2 - 2x + 2y^2 + y}{4x^2 + 4y^2 + 4y + 1}. Given Re(w)=1Re(w) = 1: 2x22x+2y2+y=4x2+4y2+4y+12x^2 - 2x + 2y^2 + y = 4x^2 + 4y^2 + 4y + 1 2x2+2y2+2x+3y+1=02x^2 + 2y^2 + 2x + 3y + 1 = 0 Dividing by 2: x2+y2+x+32y+12=0x^2 + y^2 + x + \frac{3}{2}y + \frac{1}{2} = 0 This is the equation of a circle x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0. Here, 2g=1    g=122g = 1 \implies g = \frac{1}{2}, 2f=32    f=342f = \frac{3}{2} \implies f = \frac{3}{4}, c=12c = \frac{1}{2}. The center is (g,f)=(12,34)(-g, -f) = (-\frac{1}{2}, -\frac{3}{4}). The radius squared is r2=g2+f2c=(12)2+(34)212=14+91612=4+9816=516r^2 = g^2 + f^2 - c = (\frac{1}{2})^2 + (\frac{3}{4})^2 - \frac{1}{2} = \frac{1}{4} + \frac{9}{16} - \frac{1}{2} = \frac{4+9-8}{16} = \frac{5}{16}. The radius is r=516=54r = \sqrt{\frac{5}{16}} = \frac{\sqrt{5}}{4}. The diameter is 2r=2×54=522r = 2 \times \frac{\sqrt{5}}{4} = \frac{\sqrt{5}}{2}. Option (1) matches this result. Option (3) has an incorrect center. Options (2) and (4) describe lines, which is incorrect.