Solveeit Logo

Question

Question: For the combustion of 1 mole of liquid benzene at 298 K, the heat of reaction at constant pressure i...

For the combustion of 1 mole of liquid benzene at 298 K, the heat of reaction at constant pressure is -3268 kJ mol⁻¹. What is heat of combustion at constant volume? (R = 8.314 × 10⁻³ kJ K⁻¹ mol⁻¹)

A

-6728 kJ mol⁻¹

B

-672.8 kJ mol⁻¹

C

-3264.2 kJ mol⁻¹

D

-1632 kJ mol⁻¹

Answer

-3264.2 kJ mol⁻¹

Explanation

Solution

For a reaction, the relation between the heat at constant pressure (ΔH\Delta H) and constant volume (ΔU\Delta U) is given by

ΔU=ΔHΔngRT\Delta U = \Delta H - \Delta n_g\,RT

For the combustion of liquid benzene, the balanced reaction is:

C6H6(l)+152O2(g)6CO2(g)+3H2O(l)\mathrm{C_6H_6(l)} + \frac{15}{2}\,\mathrm{O_2(g)} \rightarrow 6\,\mathrm{CO_2(g)} + 3\,\mathrm{H_2O(l)}

Here, only gaseous species count when calculating Δng\Delta n_g:

  • Moles of gas in reactants = 152=7.5\frac{15}{2} = 7.5
  • Moles of gas in products = 66 (since water is liquid)

Thus,

Δng=67.5=1.5\Delta n_g = 6 - 7.5 = -1.5

Given:

ΔH=3268 kJ/mol,R=8.314×103kJ/K/mol,T=298K\Delta H = -3268 \text{ kJ/mol}, \quad R = 8.314\times10^{-3}\,\text{kJ/K/mol}, \quad T = 298\,\text{K}

Then,

ΔU=3268(1.5)(8.314×103)(298)\Delta U = -3268 - (-1.5)(8.314\times10^{-3})(298)

Calculate the term:

RT=8.314×103×2982.478kJ/molRT = 8.314\times10^{-3}\times298 \approx 2.478\,\text{kJ/mol} 1.5×RT1.5×2.4783.717kJ/mol1.5\times RT \approx 1.5\times 2.478 \approx 3.717\,\text{kJ/mol}

Finally,

ΔU3268+3.7173264.283kJ/mol3264.2kJ/mol\Delta U \approx -3268 + 3.717 \approx -3264.283\,\text{kJ/mol} \approx -3264.2\,\text{kJ/mol}