Solveeit Logo

Question

Question: Derivative of $\log_e 2 (\log x)$ with respect to $x$ is...

Derivative of loge2(logx)\log_e 2 (\log x) with respect to xx is

A

2logx\frac{2}{\log x}

B

2xlogx\frac{2}{x \log x}

C

1x2\frac{1}{x^2}

D

1xlogx\frac{1}{x \log x}

Answer

1xlogx\frac{1}{x \log x}

Explanation

Solution

Interpreting the function as

f(x)=ln(2lnx),f(x)=\ln\bigl(2\ln x\bigr),

we can write

f(x)=ln2+ln(lnx).f(x)=\ln 2 + \ln(\ln x).

Differentiating, the constant term ln2\ln2 vanishes, so we have

f(x)=ddxln(lnx)=1lnx1x=1xlnx.f'(x)=\frac{d}{dx}\ln(\ln x)=\frac{1}{\ln x}\cdot\frac{1}{x}=\frac{1}{x\ln x}.

Thus, the correct answer is Option (d).