Solveeit Logo

Question

Question: ∫2+3x^2/x^2(1+x^2)dx...

∫2+3x^2/x^2(1+x^2)dx

Answer

-\frac{2}{x} + \arctan(x) + C

Explanation

Solution

To solve the integral 2+3x2x2(1+x2)dx\int \frac{2+3x^2}{x^2(1+x^2)}dx, we use the method of partial fraction decomposition.

First, we decompose the integrand: 2+3x2x2(1+x2)\frac{2+3x^2}{x^2(1+x^2)} Let y=x2y = x^2. Then the expression becomes: 2+3yy(1+y)\frac{2+3y}{y(1+y)} We can decompose this into partial fractions as: 2+3yy(1+y)=Ay+B1+y\frac{2+3y}{y(1+y)} = \frac{A}{y} + \frac{B}{1+y} To find AA and BB, we multiply both sides by y(1+y)y(1+y): 2+3y=A(1+y)+By2+3y = A(1+y) + By Set y=0y=0: 2+3(0)=A(1+0)+B(0)2+3(0) = A(1+0) + B(0) 2=A2 = A Set y=1y=-1: 2+3(1)=A(11)+B(1)2+3(-1) = A(1-1) + B(-1) 23=B2-3 = -B 1=B-1 = -B B=1B = 1 So, the decomposition in terms of yy is: 2+3yy(1+y)=2y+11+y\frac{2+3y}{y(1+y)} = \frac{2}{y} + \frac{1}{1+y} Now, substitute back y=x2y=x^2: 2+3x2x2(1+x2)=2x2+11+x2\frac{2+3x^2}{x^2(1+x^2)} = \frac{2}{x^2} + \frac{1}{1+x^2} Now we can integrate term by term: 2+3x2x2(1+x2)dx=(2x2+11+x2)dx\int \frac{2+3x^2}{x^2(1+x^2)}dx = \int \left( \frac{2}{x^2} + \frac{1}{1+x^2} \right) dx =2x2dx+11+x2dx= \int 2x^{-2} dx + \int \frac{1}{1+x^2} dx Using the power rule for integration xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (for n1n \neq -1) and the standard integral 11+x2dx=arctan(x)+C\int \frac{1}{1+x^2} dx = \arctan(x) + C: =2(x2+12+1)+arctan(x)+C= 2 \left( \frac{x^{-2+1}}{-2+1} \right) + \arctan(x) + C =2(x11)+arctan(x)+C= 2 \left( \frac{x^{-1}}{-1} \right) + \arctan(x) + C =2x+arctan(x)+C= -\frac{2}{x} + \arctan(x) + C

Explanation of the solution: The integral of a rational function is solved using partial fraction decomposition. The integrand 2+3x2x2(1+x2)\frac{2+3x^2}{x^2(1+x^2)} is simplified by substituting y=x2y=x^2 to 2+3yy(1+y)\frac{2+3y}{y(1+y)}. This expression is then decomposed into 2y+11+y\frac{2}{y} + \frac{1}{1+y}. Substituting x2x^2 back for yy, we get 2x2+11+x2\frac{2}{x^2} + \frac{1}{1+x^2}. Each term is then integrated separately using standard integration formulas: x2dx=x1\int x^{-2} dx = -x^{-1} and 11+x2dx=arctan(x)\int \frac{1}{1+x^2} dx = \arctan(x).