Solveeit Logo

Question

Question: Suppose for a differentiable function h, h(0) = 0, h(1) = 1 and h'(0) = h'(1) = 2. If g(x) = h(eˣ)eʰ...

Suppose for a differentiable function h, h(0) = 0, h(1) = 1 and h'(0) = h'(1) = 2. If g(x) = h(eˣ)eʰ⁽ˣ⁾, then g'(0) is equal to:

A

5

B

3

C

8

D

4

Answer

4

Explanation

Solution

The given function is g(x)=h(ex)eh(x)g(x) = h(e^x)e^{h(x)}. We need to find g(0)g'(0).

First, find the derivative of g(x)g(x) using the product rule (uv)=uv+uv(uv)' = u'v + uv': Let u=h(ex)u = h(e^x) and v=eh(x)v = e^{h(x)}. Then u=ddx(h(ex))=h(ex)exu' = \frac{d}{dx}(h(e^x)) = h'(e^x) \cdot e^x (using chain rule). And v=ddx(eh(x))=eh(x)h(x)v' = \frac{d}{dx}(e^{h(x)}) = e^{h(x)} \cdot h'(x) (using chain rule).

So, g(x)=uv+uvg'(x) = u'v + uv' g(x)=(h(ex)ex)eh(x)+h(ex)(eh(x)h(x))g'(x) = (h'(e^x) \cdot e^x) \cdot e^{h(x)} + h(e^x) \cdot (e^{h(x)} \cdot h'(x)) g(x)=eh(x)[exh(ex)+h(ex)h(x)]g'(x) = e^{h(x)} [e^x h'(e^x) + h(e^x) h'(x)]

Now, substitute x=0x=0: g(0)=eh(0)[e0h(e0)+h(e0)h(0)]g'(0) = e^{h(0)} [e^0 h'(e^0) + h(e^0) h'(0)] g(0)=eh(0)[1h(1)+h(1)h(0)]g'(0) = e^{h(0)} [1 \cdot h'(1) + h(1) \cdot h'(0)]

We are given the following values: h(0)=0h(0) = 0 h(1)=1h(1) = 1 h(0)=2h'(0) = 2 h(1)=2h'(1) = 2

Substitute these values into the expression for g(0)g'(0): g(0)=e0[12+12]g'(0) = e^0 [1 \cdot 2 + 1 \cdot 2] g(0)=1[2+2]g'(0) = 1 [2 + 2] g(0)=14g'(0) = 1 \cdot 4 g(0)=4g'(0) = 4