Solveeit Logo

Question

Question: Let $x = \sin(2 \tan^{-1} \alpha)$ and $y = \sin(\frac{1}{2} \tan^{-1} \frac{3}{4})$. If $S = \{\alp...

Let x=sin(2tan1α)x = \sin(2 \tan^{-1} \alpha) and y=sin(12tan134)y = \sin(\frac{1}{2} \tan^{-1} \frac{3}{4}). If S={αR:y2=1x}S = \{\alpha \in R : y^2 = 1-x\}, then αS16α3\sum_{\alpha \in S} 16\alpha^3 is equal to

Answer

50240/729

Explanation

Solution

Let x=sin(2tan1α)x = \sin(2 \tan^{-1} \alpha) and y=sin(12tan134)y = \sin(\frac{1}{2} \tan^{-1} \frac{3}{4}).

We express xx in terms of α\alpha. Let θ=tan1α\theta = \tan^{-1} \alpha. Then tanθ=α\tan \theta = \alpha. x=sin(2θ)=2tanθ1+tan2θ=2α1+α2x = \sin(2\theta) = \frac{2\tan\theta}{1+\tan^2\theta} = \frac{2\alpha}{1+\alpha^2}.

Next, we calculate y2y^2. Let ϕ=tan134\phi = \tan^{-1} \frac{3}{4}. Using the principal value, ϕ(0,π2)\phi \in (0, \frac{\pi}{2}). Thus tanϕ=34\tan \phi = \frac{3}{4}. We can construct a right triangle with opposite side 3 and adjacent side 4. The hypotenuse is 32+42=5\sqrt{3^2 + 4^2} = 5. From this, cosϕ=adjacenthypotenuse=45\cos \phi = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5}. Now we use the half-angle identity for sine: sin2(ϕ2)=1cosϕ2\sin^2(\frac{\phi}{2}) = \frac{1 - \cos \phi}{2}. y2=sin2(12tan134)=sin2(ϕ2)=1452=5452=152=110y^2 = \sin^2(\frac{1}{2} \tan^{-1} \frac{3}{4}) = \sin^2(\frac{\phi}{2}) = \frac{1 - \frac{4}{5}}{2} = \frac{\frac{5-4}{5}}{2} = \frac{\frac{1}{5}}{2} = \frac{1}{10}.

The condition given is y2=1xy^2 = 1-x. Substituting the expressions for xx and y2y^2: 110=12α1+α2\frac{1}{10} = 1 - \frac{2\alpha}{1+\alpha^2}. Rearranging the equation to solve for α\alpha: 2α1+α2=1110=910\frac{2\alpha}{1+\alpha^2} = 1 - \frac{1}{10} = \frac{9}{10}. Multiply both sides by 10(1+α2)10(1+\alpha^2): 20α=9(1+α2)20\alpha = 9(1+\alpha^2) 20α=9+9α220\alpha = 9 + 9\alpha^2 9α220α+9=09\alpha^2 - 20\alpha + 9 = 0.

Let the roots of this quadratic equation be α1\alpha_1 and α2\alpha_2. The set SS consists of these roots, S={α1,α2}S = \{\alpha_1, \alpha_2\}. We need to find the value of αS16α3=16α13+16α23=16(α13+α23)\sum_{\alpha \in S} 16\alpha^3 = 16\alpha_1^3 + 16\alpha_2^3 = 16(\alpha_1^3 + \alpha_2^3). From Vieta's formulas, for the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, the sum of the roots is α1+α2=ba\alpha_1 + \alpha_2 = -\frac{b}{a} and the product of the roots is α1α2=ca\alpha_1 \alpha_2 = \frac{c}{a}. For 9α220α+9=09\alpha^2 - 20\alpha + 9 = 0: Sum of roots: α1+α2=(209)=209\alpha_1 + \alpha_2 = -(\frac{-20}{9}) = \frac{20}{9}. Product of roots: α1α2=99=1\alpha_1 \alpha_2 = \frac{9}{9} = 1.

We use the identity α13+α23=(α1+α2)33α1α2(α1+α2)\alpha_1^3 + \alpha_2^3 = (\alpha_1 + \alpha_2)^3 - 3\alpha_1 \alpha_2 (\alpha_1 + \alpha_2). Substituting the values of the sum and product of the roots: α13+α23=(209)33(1)(209)\alpha_1^3 + \alpha_2^3 = \left(\frac{20}{9}\right)^3 - 3(1)\left(\frac{20}{9}\right) α13+α23=8000729609\alpha_1^3 + \alpha_2^3 = \frac{8000}{729} - \frac{60}{9} To subtract the fractions, find a common denominator, which is 729. 609=60×819×81=4860729\frac{60}{9} = \frac{60 \times 81}{9 \times 81} = \frac{4860}{729}. α13+α23=80007294860729=80004860729=3140729\alpha_1^3 + \alpha_2^3 = \frac{8000}{729} - \frac{4860}{729} = \frac{8000 - 4860}{729} = \frac{3140}{729}.

Finally, we calculate the required sum: αS16α3=16(α13+α23)=16×3140729\sum_{\alpha \in S} 16\alpha^3 = 16(\alpha_1^3 + \alpha_2^3) = 16 \times \frac{3140}{729}. 16×3140=5024016 \times 3140 = 50240. So, αS16α3=50240729\sum_{\alpha \in S} 16\alpha^3 = \frac{50240}{729}.

The final answer is 50240729\boxed{\frac{50240}{729}}.

Explanation of the solution:

  1. Express x=sin(2tan1α)x = \sin(2 \tan^{-1} \alpha) as 2α1+α2\frac{2\alpha}{1+\alpha^2}.
  2. Calculate y2=sin2(12tan134)=1cos(tan134)2=14/52=110y^2 = \sin^2(\frac{1}{2} \tan^{-1} \frac{3}{4}) = \frac{1 - \cos(\tan^{-1} \frac{3}{4})}{2} = \frac{1 - 4/5}{2} = \frac{1}{10}.
  3. Substitute xx and y2y^2 into the equation y2=1xy^2 = 1-x: 110=12α1+α2\frac{1}{10} = 1 - \frac{2\alpha}{1+\alpha^2}.
  4. Solve the resulting equation for α\alpha: 2α1+α2=910    9α220α+9=0\frac{2\alpha}{1+\alpha^2} = \frac{9}{10} \implies 9\alpha^2 - 20\alpha + 9 = 0.
  5. Let the roots of this quadratic equation be α1\alpha_1 and α2\alpha_2. Use Vieta's formulas to find the sum and product of the roots: α1+α2=209\alpha_1 + \alpha_2 = \frac{20}{9} and α1α2=1\alpha_1 \alpha_2 = 1.
  6. Calculate the sum of cubes α13+α23\alpha_1^3 + \alpha_2^3 using the identity (α1+α2)33α1α2(α1+α2)(\alpha_1 + \alpha_2)^3 - 3\alpha_1 \alpha_2 (\alpha_1 + \alpha_2). α13+α23=(209)33(1)(209)=8000729609=80004860729=3140729\alpha_1^3 + \alpha_2^3 = (\frac{20}{9})^3 - 3(1)(\frac{20}{9}) = \frac{8000}{729} - \frac{60}{9} = \frac{8000 - 4860}{729} = \frac{3140}{729}.
  7. Calculate the required sum 16(α13+α23)=16×3140729=5024072916(\alpha_1^3 + \alpha_2^3) = 16 \times \frac{3140}{729} = \frac{50240}{729}.

The final answer is 50240729\boxed{\frac{50240}{729}}.

Note: A similar question has the value 34\frac{3}{4} replaced by 43\frac{4}{3}. This leads to a much simpler integer answer of 130. It is possible that the given question had a typo, but the solution provided is for the question as written.