Question
Question: Let $x = \sin(2 \tan^{-1} \alpha)$ and $y = \sin(\frac{1}{2} \tan^{-1} \frac{3}{4})$. If $S = \{\alp...
Let x=sin(2tan−1α) and y=sin(21tan−143). If S={α∈R:y2=1−x}, then ∑α∈S16α3 is equal to

50240/729
Solution
Let x=sin(2tan−1α) and y=sin(21tan−143).
We express x in terms of α. Let θ=tan−1α. Then tanθ=α. x=sin(2θ)=1+tan2θ2tanθ=1+α22α.
Next, we calculate y2. Let ϕ=tan−143. Using the principal value, ϕ∈(0,2π). Thus tanϕ=43. We can construct a right triangle with opposite side 3 and adjacent side 4. The hypotenuse is 32+42=5. From this, cosϕ=hypotenuseadjacent=54. Now we use the half-angle identity for sine: sin2(2ϕ)=21−cosϕ. y2=sin2(21tan−143)=sin2(2ϕ)=21−54=255−4=251=101.
The condition given is y2=1−x. Substituting the expressions for x and y2: 101=1−1+α22α. Rearranging the equation to solve for α: 1+α22α=1−101=109. Multiply both sides by 10(1+α2): 20α=9(1+α2) 20α=9+9α2 9α2−20α+9=0.
Let the roots of this quadratic equation be α1 and α2. The set S consists of these roots, S={α1,α2}. We need to find the value of ∑α∈S16α3=16α13+16α23=16(α13+α23). From Vieta's formulas, for the quadratic equation ax2+bx+c=0, the sum of the roots is α1+α2=−ab and the product of the roots is α1α2=ac. For 9α2−20α+9=0: Sum of roots: α1+α2=−(9−20)=920. Product of roots: α1α2=99=1.
We use the identity α13+α23=(α1+α2)3−3α1α2(α1+α2). Substituting the values of the sum and product of the roots: α13+α23=(920)3−3(1)(920) α13+α23=7298000−960 To subtract the fractions, find a common denominator, which is 729. 960=9×8160×81=7294860. α13+α23=7298000−7294860=7298000−4860=7293140.
Finally, we calculate the required sum: ∑α∈S16α3=16(α13+α23)=16×7293140. 16×3140=50240. So, ∑α∈S16α3=72950240.
The final answer is 72950240.
Explanation of the solution:
- Express x=sin(2tan−1α) as 1+α22α.
- Calculate y2=sin2(21tan−143)=21−cos(tan−143)=21−4/5=101.
- Substitute x and y2 into the equation y2=1−x: 101=1−1+α22α.
- Solve the resulting equation for α: 1+α22α=109⟹9α2−20α+9=0.
- Let the roots of this quadratic equation be α1 and α2. Use Vieta's formulas to find the sum and product of the roots: α1+α2=920 and α1α2=1.
- Calculate the sum of cubes α13+α23 using the identity (α1+α2)3−3α1α2(α1+α2). α13+α23=(920)3−3(1)(920)=7298000−960=7298000−4860=7293140.
- Calculate the required sum 16(α13+α23)=16×7293140=72950240.
The final answer is 72950240.
Note: A similar question has the value 43 replaced by 34. This leads to a much simpler integer answer of 130. It is possible that the given question had a typo, but the solution provided is for the question as written.