Solveeit Logo

Question

Question: Let f(x) be a continuous and differentiable function satisfying f(x + y) = f(x)f(y) ∀ x, y ∈ R if f(...

Let f(x) be a continuous and differentiable function satisfying f(x + y) = f(x)f(y) ∀ x, y ∈ R if f(x) can be expressed as f(x) = 1 + x P(x) + x²Q(x) where limx0P(x)=a\lim_{x\to 0} P(x) = a and limx0Q(x)=b\lim_{x\to 0} Q(x) = b, then

f'(x) is equal to :

A

a f(x)

B

b f(x)

C

(a + b) f(x)

D

(a+2b) f(x)

Answer

a f(x)

Explanation

Solution

The given functional equation is f(x+y)=f(x)f(y)f(x + y) = f(x)f(y) for all x,yRx, y \in \mathbb{R}. A continuous function satisfying this equation must be of the form f(x)=cxf(x) = c^x for some constant cc. Since f(x)f(x) is also differentiable, this form is valid.

Let's evaluate f(0)f(0) using the given expression f(x)=1+xP(x)+x2Q(x)f(x) = 1 + x P(x) + x^2 Q(x). Since ff is continuous, limx0f(x)=f(0)\lim_{x\to 0} f(x) = f(0). limx0f(x)=limx0(1+xP(x)+x2Q(x))\lim_{x\to 0} f(x) = \lim_{x\to 0} (1 + x P(x) + x^2 Q(x)) =1+limx0(xP(x))+limx0(x2Q(x))= 1 + \lim_{x\to 0} (x P(x)) + \lim_{x\to 0} (x^2 Q(x)) =1+(limx0x)(limx0P(x))+(limx0x2)(limx0Q(x))= 1 + (\lim_{x\to 0} x) (\lim_{x\to 0} P(x)) + (\lim_{x\to 0} x^2) (\lim_{x\to 0} Q(x)) =1+0a+0b=1= 1 + 0 \cdot a + 0 \cdot b = 1. So, f(0)=1f(0) = 1. This is consistent with f(x)=cxf(x) = c^x, since f(0)=c0=1f(0) = c^0 = 1.

Now, let's find the derivative f(x)f'(x) using the definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h} Using the functional equation f(x+h)=f(x)f(h)f(x+h) = f(x)f(h), we have: f(x)=limh0f(x)f(h)f(x)h=limh0f(x)(f(h)1)hf'(x) = \lim_{h\to 0} \frac{f(x)f(h) - f(x)}{h} = \lim_{h\to 0} \frac{f(x)(f(h) - 1)}{h} Since f(x)f(x) does not depend on hh, we can take it out of the limit: f(x)=f(x)limh0f(h)1hf'(x) = f(x) \lim_{h\to 0} \frac{f(h) - 1}{h}

The limit limh0f(h)1h\lim_{h\to 0} \frac{f(h) - 1}{h} is the definition of the derivative of ff at x=0x=0, since f(0)=1f(0)=1. f(0)=limh0f(0+h)f(0)h=limh0f(h)1hf'(0) = \lim_{h\to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h\to 0} \frac{f(h) - 1}{h}. So, f(x)=f(x)f(0)f'(x) = f(x) f'(0).

Now we need to find f(0)f'(0). We use the given expression for f(x)f(x) near x=0x=0: f(x)=1+xP(x)+x2Q(x)f(x) = 1 + x P(x) + x^2 Q(x) for x0x \neq 0. For h0h \neq 0, we have f(h)=1+hP(h)+h2Q(h)f(h) = 1 + h P(h) + h^2 Q(h). So, f(h)1h=(1+hP(h)+h2Q(h))1h=hP(h)+h2Q(h)h=P(h)+hQ(h)\frac{f(h) - 1}{h} = \frac{(1 + h P(h) + h^2 Q(h)) - 1}{h} = \frac{h P(h) + h^2 Q(h)}{h} = P(h) + h Q(h).

Now, we evaluate the limit as h0h \to 0: f(0)=limh0(P(h)+hQ(h))f'(0) = \lim_{h\to 0} (P(h) + h Q(h)) Using the properties of limits: f(0)=limh0P(h)+limh0(hQ(h))f'(0) = \lim_{h\to 0} P(h) + \lim_{h\to 0} (h Q(h)) We are given limh0P(h)=a\lim_{h\to 0} P(h) = a and limh0Q(h)=b\lim_{h\to 0} Q(h) = b. limh0(hQ(h))=(limh0h)(limh0Q(h))=0b=0\lim_{h\to 0} (h Q(h)) = (\lim_{h\to 0} h) (\lim_{h\to 0} Q(h)) = 0 \cdot b = 0. So, f(0)=a+0=af'(0) = a + 0 = a.

Substituting this back into the expression for f(x)f'(x): f(x)=f(x)a=af(x)f'(x) = f(x) \cdot a = a f(x).

The derivative of f(x)f(x) is af(x)a f(x).