Solveeit Logo

Question

Question: In Young's double slit experiment, the ratio of amplitude of light coming from two slits is 2:3. If ...

In Young's double slit experiment, the ratio of amplitude of light coming from two slits is 2:3. If I₀ be the maximum intensity the resultant intensity I when they interfere at path difference λ/3 (λ = wavelength of light) will be

A

3I025\frac{3I_0}{25}

B

6I025\frac{6I_0}{25}

C

7I025\frac{7I_0}{25}

D

9I025\frac{9I_0}{25}

Answer

7I025\frac{7I_0}{25}

Explanation

Solution

Let the amplitudes of light coming from the two slits be A1A_1 and A2A_2. Given the ratio of amplitudes is A1:A2=2:3A_1 : A_2 = 2 : 3. Let A1=2aA_1 = 2a and A2=3aA_2 = 3a for some constant aa.

The intensity of light is proportional to the square of its amplitude (IA2I \propto A^2). The maximum intensity (I0I_0) occurs when the waves interfere constructively. The resultant amplitude for constructive interference is Amax=A1+A2A_{max} = A_1 + A_2. Amax=2a+3a=5aA_{max} = 2a + 3a = 5a. The maximum intensity I0I_0 is proportional to Amax2A_{max}^2: I0(5a)2=25a2I_0 \propto (5a)^2 = 25a^2. Let I0=K(25a2)I_0 = K(25a^2) for some proportionality constant KK.

The path difference is given as Δx=λ3\Delta x = \frac{\lambda}{3}. The phase difference ϕ\phi is related to the path difference by the formula: ϕ=2πλΔx\phi = \frac{2\pi}{\lambda} \Delta x Substituting the given path difference: ϕ=2πλ(λ3)=2π3\phi = \frac{2\pi}{\lambda} \left(\frac{\lambda}{3}\right) = \frac{2\pi}{3}.

The resultant amplitude AA when two waves with amplitudes A1A_1, A2A_2 and phase difference ϕ\phi interfere is given by: A2=A12+A22+2A1A2cosϕA^2 = A_1^2 + A_2^2 + 2A_1 A_2 \cos \phi Substituting the values A1=2aA_1=2a, A2=3aA_2=3a, and ϕ=2π3\phi = \frac{2\pi}{3}: A2=(2a)2+(3a)2+2(2a)(3a)cos(2π3)A^2 = (2a)^2 + (3a)^2 + 2(2a)(3a) \cos\left(\frac{2\pi}{3}\right) A2=4a2+9a2+12a2cos(2π3)A^2 = 4a^2 + 9a^2 + 12a^2 \cos\left(\frac{2\pi}{3}\right) Since cos(2π3)=12\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}: A2=4a2+9a2+12a2(12)A^2 = 4a^2 + 9a^2 + 12a^2 \left(-\frac{1}{2}\right) A2=13a26a2A^2 = 13a^2 - 6a^2 A2=7a2A^2 = 7a^2.

The resultant intensity II is proportional to A2A^2: I7a2I \propto 7a^2. So, I=K(7a2)I = K(7a^2).

We need to express II in terms of I0I_0. We have I0=K(25a2)I_0 = K(25a^2). From this, we can write Ka2=I025Ka^2 = \frac{I_0}{25}. Substituting this into the expression for II: I=7(Ka2)=7(I025)=7I025I = 7 \left(Ka^2\right) = 7 \left(\frac{I_0}{25}\right) = \frac{7I_0}{25}.