Question
Question: 23. If $y = \sqrt{(x-sinx) + \sqrt{(x-sinx) + \sqrt{(x-sinx).........}}}$ then $\frac{dy}{dx} =$...
- If y=(x−sinx)+(x−sinx)+(x−sinx).........
then dxdy=
A
2y−11−cosx
B
2y−11+cosx
C
2y+11−cosx
D
2y−11−sinx
Answer
a) 2y−11−cosx
Explanation
Solution
The expression is given by:
y=(x−sinx)+(x−sinx)+(x−sinx)+⋯Since the radical repeats, we have:
y=(x−sinx)+ySquaring both sides gives:
y2=(x−sinx)+y⟹y2−y−(x−sinx)=0Differentiating implicitly with respect to x:
2ydxdy−dxdy−(1−cosx)=0 (2y−1)dxdy=1−cosxThus,
dxdy=2y−11−cosx