Solveeit Logo

Question

Question: If $f_n(x) = \prod_{s=0}^{n-1}(2\cos(2^s x) - 1), n \ge 1$. Then which of the following is/are true-...

If fn(x)=s=0n1(2cos(2sx)1),n1f_n(x) = \prod_{s=0}^{n-1}(2\cos(2^s x) - 1), n \ge 1. Then which of the following is/are true-

A

f5(2π33)=1f_5(\frac{2\pi}{33}) = -1

B

f5(6π255)=1f_5(\frac{6\pi}{255}) = 1

C

f5(2π31)=1f_5(\frac{2\pi}{31}) = 1

D

f5(4π127)=1f_5(\frac{4\pi}{127}) = 1

Answer

C

Explanation

Solution

Let fn(x)=s=0n1(2cos(2sx)1)f_n(x) = \prod_{s=0}^{n-1}(2\cos(2^s x) - 1). We can simplify the general term 2cosθ12\cos\theta - 1 using complex exponentials. Let z=eiθz = e^{i\theta}. Then 2cosθ1=z+z11=z2z+1z2\cos\theta - 1 = z + z^{-1} - 1 = \frac{z^2 - z + 1}{z}. We know the identity z3+1=(z+1)(z2z+1)z^3+1 = (z+1)(z^2-z+1), so z2z+1=z3+1z+1z^2-z+1 = \frac{z^3+1}{z+1}. Substituting this back, 2cosθ1=1zz3+1z+12\cos\theta - 1 = \frac{1}{z} \frac{z^3+1}{z+1}. Now, let θ=2sx\theta = 2^s x. So z=ei2sxz = e^{i2^s x}. The general term of the product becomes: 2cos(2sx)1=1ei2sxei32sx+1ei2sx+12\cos(2^s x) - 1 = \frac{1}{e^{i2^s x}} \frac{e^{i3 \cdot 2^s x}+1}{e^{i2^s x}+1}.

Now, let's write out the product fn(x)f_n(x): fn(x)=s=0n1(1ei2sxei32sx+1ei2sx+1)f_n(x) = \prod_{s=0}^{n-1} \left( \frac{1}{e^{i2^s x}} \frac{e^{i3 \cdot 2^s x}+1}{e^{i2^s x}+1} \right) fn(x)=s=0n1(ei32sx+1)s=0n1ei2sxs=0n1(ei2sx+1)f_n(x) = \frac{\prod_{s=0}^{n-1} (e^{i3 \cdot 2^s x}+1)}{\prod_{s=0}^{n-1} e^{i2^s x} \prod_{s=0}^{n-1} (e^{i2^s x}+1)}.

Let's simplify the terms in the denominator:

  1. s=0n1ei2sx=eixs=0n12s=eix(2n1)\prod_{s=0}^{n-1} e^{i2^s x} = e^{i x \sum_{s=0}^{n-1} 2^s} = e^{ix (2^n-1)}.
  2. s=0n1(ei2sx+1)\prod_{s=0}^{n-1} (e^{i2^s x}+1). We use the identity k=0m1(A2k+1)=A2m1A1\prod_{k=0}^{m-1} (A^{2^k}+1) = \frac{A^{2^m}-1}{A-1}. Here, A=eixA = e^{ix} and m=nm=n. So, s=0n1(ei2sx+1)=(eix)2n1eix1=ei2nx1eix1\prod_{s=0}^{n-1} (e^{i2^s x}+1) = \frac{(e^{ix})^{2^n}-1}{e^{ix}-1} = \frac{e^{i2^n x}-1}{e^{ix}-1}. Combining these, the denominator of fn(x)f_n(x) is ei(2n1)xei2nx1eix1e^{i(2^n-1)x} \frac{e^{i2^n x}-1}{e^{ix}-1}.

Now for the numerator: s=0n1(ei32sx+1)\prod_{s=0}^{n-1} (e^{i3 \cdot 2^s x}+1). Let X=3xX = 3x. This product is s=0n1(ei2sX+1)=ei2nX1eiX1=ei32nx1ei3x1\prod_{s=0}^{n-1} (e^{i2^s X}+1) = \frac{e^{i2^n X}-1}{e^{iX}-1} = \frac{e^{i3 \cdot 2^n x}-1}{e^{i3x}-1}.

So, the general formula for fn(x)f_n(x) is: fn(x)=ei32nx1ei3x1ei(2n1)xei2nx1eix1f_n(x) = \frac{\frac{e^{i3 \cdot 2^n x}-1}{e^{i3x}-1}}{e^{i(2^n-1)x} \frac{e^{i2^n x}-1}{e^{ix}-1}}. This formula is valid as long as the denominators are non-zero. That means eix1e^{ix} \ne 1, ei3x1e^{i3x} \ne 1, ei2nx1e^{i2^n x} \ne 1.

Let's evaluate the options for n=5n=5.

(C) f5(2π31)f_5(\frac{2\pi}{31}) Here n=5n=5, x=2π31x = \frac{2\pi}{31}. Denominator: ei(251)xei25x1eix1=ei31xei32x1eix1e^{i(2^5-1)x} \frac{e^{i2^5 x}-1}{e^{ix}-1} = e^{i31x} \frac{e^{i32x}-1}{e^{ix}-1}. 31x=312π31=2π31x = 31 \cdot \frac{2\pi}{31} = 2\pi. So ei31x=1e^{i31x} = 1. 32x=322π31=64π31=2π+2π3132x = 32 \cdot \frac{2\pi}{31} = \frac{64\pi}{31} = 2\pi + \frac{2\pi}{31}. So ei32x=ei2π/31=eixe^{i32x} = e^{i2\pi/31} = e^{ix}. The denominator is 1eix1eix1=11 \cdot \frac{e^{ix}-1}{e^{ix}-1} = 1. (Since eix1e^{ix} \ne 1).

Numerator: ei325x1ei3x1=ei96x1ei3x1\frac{e^{i3 \cdot 2^5 x}-1}{e^{i3x}-1} = \frac{e^{i96x}-1}{e^{i3x}-1}. 96x=962π31=192π31=6π+6π3196x = 96 \cdot \frac{2\pi}{31} = \frac{192\pi}{31} = 6\pi + \frac{6\pi}{31}. So ei96x=ei6π/31e^{i96x} = e^{i6\pi/31}. 3x=32π31=6π313x = 3 \cdot \frac{2\pi}{31} = \frac{6\pi}{31}. So ei3x=ei6π/31e^{i3x} = e^{i6\pi/31}. The numerator is ei6π/311ei6π/311=1\frac{e^{i6\pi/31}-1}{e^{i6\pi/31}-1} = 1. (Since ei6π/311e^{i6\pi/31} \ne 1).

So, f5(2π31)=11=1f_5(\frac{2\pi}{31}) = \frac{1}{1} = 1. Option (C) states f5(2π31)=1f_5(\frac{2\pi}{31}) = 1. So (C) is true.