Solveeit Logo

Question

Question: A solid hemisphere of radius R has a variable volume density $\rho = \rho_0 \frac{r}{R}$, where r is...

A solid hemisphere of radius R has a variable volume density ρ=ρ0rR\rho = \rho_0 \frac{r}{R}, where r is the distance from the center of hemisphere. The distance of center of mass of the hemisphere from the center is :-

A

R3\frac{R}{3}

B

2R9\frac{2R}{9}

C

2R5\frac{2R}{5}

D

3R8\frac{3R}{8}

Answer

2R/5

Explanation

Solution

To find the center of mass of the hemisphere, we will use spherical coordinates due to the spherical symmetry of the object and the density function.

Let the center of the hemisphere be at the origin (0,0,0). Assume the flat face of the hemisphere lies in the xy-plane and the curved surface extends into the positive z-axis (i.e., z0z \ge 0).

The density is given by ρ=ρ0rR\rho = \rho_0 \frac{r}{R}, where rr is the distance from the center.

In spherical coordinates, a differential volume element is dV=r2sinθdrdθdϕdV = r^2 \sin\theta dr d\theta d\phi. The limits for a hemisphere with its flat face in the xy-plane and curved part in z0z \ge 0 are:

  • Radius rr: from 0 to R
  • Polar angle θ\theta: from 0 to π/2\pi/2 (from positive z-axis to xy-plane)
  • Azimuthal angle ϕ\phi: from 0 to 2π2\pi (full circle around z-axis)

The differential mass element dmdm is ρdV\rho dV: dm=(ρ0rR)(r2sinθdrdθdϕ)=ρ0Rr3sinθdrdθdϕdm = \left(\rho_0 \frac{r}{R}\right) (r^2 \sin\theta dr d\theta d\phi) = \frac{\rho_0}{R} r^3 \sin\theta dr d\theta d\phi.

Due to symmetry, the center of mass will lie on the z-axis. So, we only need to calculate the z-coordinate of the center of mass, ZCMZ_{CM}. The formula for ZCMZ_{CM} is: ZCM=zdmdmZ_{CM} = \frac{\int z dm}{\int dm}

1. Calculate the total mass (M): M=dm=02π0π/20Rρ0Rr3sinθdrdθdϕM = \int dm = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R \frac{\rho_0}{R} r^3 \sin\theta dr d\theta d\phi We can separate the integrals: M=ρ0R(0Rr3dr)(0π/2sinθdθ)(02πdϕ)M = \frac{\rho_0}{R} \left( \int_0^R r^3 dr \right) \left( \int_0^{\pi/2} \sin\theta d\theta \right) \left( \int_0^{2\pi} d\phi \right)

Evaluate each integral: 0Rr3dr=[r44]0R=R44\int_0^R r^3 dr = \left[ \frac{r^4}{4} \right]_0^R = \frac{R^4}{4} 0π/2sinθdθ=[cosθ]0π/2=cos(π/2)(cos(0))=0(1)=1\int_0^{\pi/2} \sin\theta d\theta = \left[ -\cos\theta \right]_0^{\pi/2} = -\cos(\pi/2) - (-\cos(0)) = 0 - (-1) = 1 02πdϕ=[ϕ]02π=2π\int_0^{2\pi} d\phi = \left[ \phi \right]_0^{2\pi} = 2\pi

Substitute these values back into the expression for M: M=ρ0R(R44)(1)(2π)=ρ0πR32M = \frac{\rho_0}{R} \left( \frac{R^4}{4} \right) (1) (2\pi) = \frac{\rho_0 \pi R^3}{2}

2. Calculate the moment of mass along the z-axis (zdm\int z dm): In spherical coordinates, z=rcosθz = r \cos\theta. zdm=02π0π/20R(rcosθ)(ρ0Rr3sinθ)drdθdϕ\int z dm = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R (r \cos\theta) \left( \frac{\rho_0}{R} r^3 \sin\theta \right) dr d\theta d\phi zdm=ρ0R(0Rr4dr)(0π/2sinθcosθdθ)(02πdϕ)\int z dm = \frac{\rho_0}{R} \left( \int_0^R r^4 dr \right) \left( \int_0^{\pi/2} \sin\theta \cos\theta d\theta \right) \left( \int_0^{2\pi} d\phi \right)

Evaluate each integral: 0Rr4dr=[r55]0R=R55\int_0^R r^4 dr = \left[ \frac{r^5}{5} \right]_0^R = \frac{R^5}{5} 0π/2sinθcosθdθ\int_0^{\pi/2} \sin\theta \cos\theta d\theta: Let u=sinθu = \sin\theta, then du=cosθdθdu = \cos\theta d\theta. When θ=0,u=0\theta=0, u=0; when θ=π/2,u=1\theta=\pi/2, u=1. 01udu=[u22]01=122022=12\int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} 02πdϕ=2π\int_0^{2\pi} d\phi = 2\pi

Substitute these values back into the expression for zdm\int z dm: zdm=ρ0R(R55)(12)(2π)=ρ0πR45\int z dm = \frac{\rho_0}{R} \left( \frac{R^5}{5} \right) \left( \frac{1}{2} \right) (2\pi) = \frac{\rho_0 \pi R^4}{5}

3. Calculate ZCMZ_{CM}: ZCM=zdmM=ρ0πR45ρ0πR32Z_{CM} = \frac{\int z dm}{M} = \frac{\frac{\rho_0 \pi R^4}{5}}{\frac{\rho_0 \pi R^3}{2}} ZCM=ρ0πR45×2ρ0πR3=2R5Z_{CM} = \frac{\rho_0 \pi R^4}{5} \times \frac{2}{\rho_0 \pi R^3} = \frac{2R}{5}

The distance of the center of mass of the hemisphere from the center is 2R5\frac{2R}{5}.