Solveeit Logo

Question

Question: 2^(23^23) divided by 7 will give what remainder using binomial theorem...

2^(23^23) divided by 7 will give what remainder using binomial theorem

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

To find the remainder when 223232^{23^{23}} is divided by 7, we can use modular arithmetic and the binomial theorem.

  1. Identify the cycle of powers of 2 modulo 7:

    • 212(mod7)2^1 \equiv 2 \pmod{7}
    • 224(mod7)2^2 \equiv 4 \pmod{7}
    • 2381(mod7)2^3 \equiv 8 \equiv 1 \pmod{7} The cycle length of powers of 2 modulo 7 is 3. This means that the remainder of 2n(mod7)2^n \pmod{7} depends on the value of n(mod3)n \pmod{3}.
  2. Determine the exponent modulo the cycle length: The exponent is 232323^{23}. We need to find the remainder of 232323^{23} when divided by 3.

    • First, reduce the base (23) modulo 3: 23=7×3+223 = 7 \times 3 + 2, so 232(mod3)23 \equiv 2 \pmod{3}. Alternatively, 231(mod3)23 \equiv -1 \pmod{3}.
    • Now, substitute this into the exponent: 2323(1)23(mod3)23^{23} \equiv (-1)^{23} \pmod{3}.
    • Since 23 is an odd number, (1)23=1(-1)^{23} = -1.
    • Therefore, 232312(mod3)23^{23} \equiv -1 \equiv 2 \pmod{3}.
  3. Apply the findings to the original expression: Since 23232(mod3)23^{23} \equiv 2 \pmod{3}, we can write 232323^{23} in the form 3k+23k+2 for some integer kk. So, the problem becomes finding 23k+2(mod7)2^{3k+2} \pmod{7}. 23k+2=23k22=(23)k42^{3k+2} = 2^{3k} \cdot 2^2 = (2^3)^k \cdot 4.

  4. Use the binomial theorem (implicitly): We know 23=82^3 = 8. We want to find (23)k(mod7)(2^3)^k \pmod{7}, which is 8k(mod7)8^k \pmod{7}. We can write 88 as 7+17+1. Using the binomial theorem for (7+1)k(7+1)^k: (7+1)k=i=0k(ki)7i1ki(7+1)^k = \sum_{i=0}^k \binom{k}{i} 7^i 1^{k-i}. When we take this modulo 7, all terms where i1i \ge 1 will have a factor of 7, making them 0 modulo 7. So, (7+1)k(k0)701k(mod7)(7+1)^k \equiv \binom{k}{0} 7^0 1^k \pmod{7}. (7+1)k1111(mod7)(7+1)^k \equiv 1 \cdot 1 \cdot 1 \equiv 1 \pmod{7}. Thus, (23)k1(mod7)(2^3)^k \equiv 1 \pmod{7}.

  5. Final Calculation: Substitute the result from step 4 back into the expression from step 3: 22323(23)k4(mod7)2^{23^{23}} \equiv (2^3)^k \cdot 4 \pmod{7} 2232314(mod7)2^{23^{23}} \equiv 1 \cdot 4 \pmod{7} 223234(mod7)2^{23^{23}} \equiv 4 \pmod{7}.

The remainder is 4.