Solveeit Logo

Question

Question: 2^(23^23) divided by 7 will give what remainder using binomial theorem...

2^(23^23) divided by 7 will give what remainder using binomial theorem

Answer

4

Explanation

Solution

To find the remainder of 223232^{23^{23}} when divided by 7, we use modular arithmetic and the binomial theorem.

  1. Determine the cycle of powers of 2 modulo 7: We examine the first few powers of 2 modulo 7: 212(mod7)2^1 \equiv 2 \pmod{7} 224(mod7)2^2 \equiv 4 \pmod{7} 2381(mod7)2^3 \equiv 8 \equiv 1 \pmod{7} The powers of 2 modulo 7 repeat with a cycle of length 3. This means 2k(mod7)2^k \pmod{7} depends on the value of k(mod3)k \pmod{3}.

  2. Calculate the exponent modulo the cycle length (3) using the binomial theorem: The exponent is E=2323E = 23^{23}. We need to find E(mod3)E \pmod{3}. We can express the base of the exponent, 23, as 23=3×7+223 = 3 \times 7 + 2. Using the binomial theorem for (a+b)n=i=0n(ni)anibi(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i, let a=3×7a = 3 \times 7, b=2b = 2, and n=23n = 23. E=(3×7+2)23=i=023(23i)(3×7)23i2iE = (3 \times 7 + 2)^{23} = \sum_{i=0}^{23} \binom{23}{i} (3 \times 7)^{23-i} 2^i. When we consider this expression modulo 3, all terms where (3×7)(3 \times 7) is raised to a power of 1 or greater will be divisible by 3. The only term that might not be divisible by 3 is the one where the power of (3×7)(3 \times 7) is 0, which occurs when i=23i = 23. So, E(2323)(3×7)2323223(mod3)E \equiv \binom{23}{23} (3 \times 7)^{23-23} 2^{23} \pmod{3}. E1(3×7)0223(mod3)E \equiv 1 \cdot (3 \times 7)^0 \cdot 2^{23} \pmod{3}. E11223(mod3)E \equiv 1 \cdot 1 \cdot 2^{23} \pmod{3}. E223(mod3)E \equiv 2^{23} \pmod{3}. Now, we evaluate 223(mod3)2^{23} \pmod{3}. Since 21(mod3)2 \equiv -1 \pmod{3}: E(1)23(mod3)E \equiv (-1)^{23} \pmod{3}. Since 23 is an odd exponent, (1)23=1(-1)^{23} = -1. Therefore, E12(mod3)E \equiv -1 \equiv 2 \pmod{3}. This means 23232(mod3)23^{23} \equiv 2 \pmod{3}.

  3. Calculate the final remainder: We found that the exponent 232323^{23} has a remainder of 2 when divided by 3. So we can write 2323=3m+223^{23} = 3m + 2 for some integer mm. Substitute this back into the original expression: 22323=23m+22^{23^{23}} = 2^{3m+2}. Now, we find the remainder modulo 7: 23m+2=(23)m222^{3m+2} = (2^3)^m \cdot 2^2. Using the cycle we found in step 1 (231(mod7)2^3 \equiv 1 \pmod{7}): (23)m221m22(mod7)(2^3)^m \cdot 2^2 \equiv 1^m \cdot 2^2 \pmod{7}. 1m2214(mod7)1^m \cdot 2^2 \equiv 1 \cdot 4 \pmod{7}. 144(mod7)1 \cdot 4 \equiv 4 \pmod{7}.

The remainder is 4.