Solveeit Logo

Question

Question: The specific conductance of 0.01 M solution of acetic acid was found to be 0.0162 S m⁻¹ at 25°C. Cal...

The specific conductance of 0.01 M solution of acetic acid was found to be 0.0162 S m⁻¹ at 25°C. Calculate the percentage degree of dissociation of the acid. (Molar conductance of acetic acid at infinite dilution is 390.6 ×10⁻⁴ S m² mol⁻¹ at 25°C). (Nearest Integer)

Answer

4

Explanation

Solution

To calculate the percentage degree of dissociation of acetic acid, we follow these steps:

  1. Convert the concentration units:
    The given concentration is in M (mol L⁻¹), and specific conductance is in S m⁻¹, while molar conductance at infinite dilution is in S m² mol⁻¹. To ensure consistent units, we convert the concentration from mol L⁻¹ to mol m⁻³.
    1 L=103 m31 \text{ L} = 10^{-3} \text{ m}^3
    So, 0.01 M=0.01 mol L1=0.01 mol/(103 m3)=10 mol m30.01 \text{ M} = 0.01 \text{ mol L}^{-1} = 0.01 \text{ mol} / (10^{-3} \text{ m}^3) = 10 \text{ mol m}^{-3}

  2. Calculate the molar conductance (Λm\Lambda_m) at the given concentration:
    The formula for molar conductance is:
    Λm=κC\Lambda_m = \frac{\kappa}{C}
    where κ\kappa is the specific conductance and CC is the concentration.
    Given κ=0.0162 S m1\kappa = 0.0162 \text{ S m}^{-1} and C=10 mol m3C = 10 \text{ mol m}^{-3}.
    Λm=0.0162 S m110 mol m3=0.00162 S m2 mol1\Lambda_m = \frac{0.0162 \text{ S m}^{-1}}{10 \text{ mol m}^{-3}} = 0.00162 \text{ S m}^2 \text{ mol}^{-1}

  3. Calculate the degree of dissociation (α\alpha):
    The degree of dissociation is given by the ratio of molar conductance at a given concentration to the molar conductance at infinite dilution:
    α=ΛmΛm\alpha = \frac{\Lambda_m}{\Lambda_m^\circ}
    Given Λm=390.6×104 S m2 mol1=0.03906 S m2 mol1\Lambda_m^\circ = 390.6 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1} = 0.03906 \text{ S m}^2 \text{ mol}^{-1}.
    α=0.00162 S m2 mol10.03906 S m2 mol1=0.0414746...\alpha = \frac{0.00162 \text{ S m}^2 \text{ mol}^{-1}}{0.03906 \text{ S m}^2 \text{ mol}^{-1}} = 0.0414746...

  4. Calculate the percentage degree of dissociation:
    Percentage degree of dissociation =α×100%= \alpha \times 100\%
    Percentage degree of dissociation =0.0414746...×100%=4.14746...%= 0.0414746... \times 100\% = 4.14746... \%

  5. Round to the nearest integer:
    Rounding 4.14746...% to the nearest integer gives 4%.

The final answer is 4.

Explanation of the solution:

  1. Convert concentration from mol/L to mol/m³: 0.01 M=10 mol m30.01 \text{ M} = 10 \text{ mol m}^{-3}.
  2. Calculate molar conductance at given concentration: Λm=κ/C=0.0162 S m1/10 mol m3=0.00162 S m2 mol1\Lambda_m = \kappa / C = 0.0162 \text{ S m}^{-1} / 10 \text{ mol m}^{-3} = 0.00162 \text{ S m}^2 \text{ mol}^{-1}.
  3. Calculate degree of dissociation: α=Λm/Λm=0.00162 S m2 mol1/(390.6×104 S m2 mol1)=0.04147\alpha = \Lambda_m / \Lambda_m^\circ = 0.00162 \text{ S m}^2 \text{ mol}^{-1} / (390.6 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}) = 0.04147.
  4. Convert to percentage: Percentage α=0.04147×100%=4.147%\alpha = 0.04147 \times 100\% = 4.147\%.
  5. Round to the nearest integer: 4%4\%.