Solveeit Logo

Question

Question: Let f be a twice differentiable function such that $f''(x)=-f(x)$, $g(x) = f'(x)$ and $h(x) = (f(x))...

Let f be a twice differentiable function such that f(x)=f(x)f''(x)=-f(x), g(x)=f(x)g(x) = f'(x) and h(x)=(f(x))2+(g(x))2h(x) = (f(x))^2 + (g(x))^2. If h (5) = 1, then h (10) =

A
  • 1
B

1

C

4

D

10

Answer

1

Explanation

Solution

Given the differential equation f(x)=f(x)f''(x) = -f(x) and g(x)=f(x)g(x) = f'(x). We are given h(x)=(f(x))2+(g(x))2h(x) = (f(x))^2 + (g(x))^2. To find h(10)h(10), we first find the derivative of h(x)h(x): h(x)=ddx[(f(x))2]+ddx[(g(x))2]h'(x) = \frac{d}{dx}[(f(x))^2] + \frac{d}{dx}[(g(x))^2] Using the chain rule, this becomes: h(x)=2f(x)f(x)+2g(x)g(x)h'(x) = 2f(x)f'(x) + 2g(x)g'(x)

Substitute g(x)=f(x)g(x) = f'(x): h(x)=2f(x)g(x)+2g(x)g(x)h'(x) = 2f(x)g(x) + 2g(x)g'(x)

Now, find g(x)g'(x): g(x)=ddx[f(x)]=f(x)g'(x) = \frac{d}{dx}[f'(x)] = f''(x)

From the given condition, f(x)=f(x)f''(x) = -f(x). So, g(x)=f(x)g'(x) = -f(x)

Substitute g(x)=f(x)g'(x) = -f(x) back into the expression for h(x)h'(x): h(x)=2f(x)g(x)+2g(x)(f(x))h'(x) = 2f(x)g(x) + 2g(x)(-f(x)) h(x)=2f(x)g(x)2f(x)g(x)h'(x) = 2f(x)g(x) - 2f(x)g(x) h(x)=0h'(x) = 0

Since the derivative of h(x)h(x) is 0 for all xx, h(x)h(x) must be a constant function. Let h(x)=Ch(x) = C, where CC is a constant.

We are given that h(5)=1h(5) = 1. Therefore, C=1C = 1. So, h(x)=1h(x) = 1 for all values of xx.

Consequently, h(10)=1h(10) = 1. The final answer is 1\boxed{1} (Option B)