Question
Question: Let f be a twice differentiable function such that $f''(x)=-f(x)$, $g(x) = f'(x)$ and $h(x) = (f(x))...
Let f be a twice differentiable function such that f′′(x)=−f(x), g(x)=f′(x) and h(x)=(f(x))2+(g(x))2. If h (5) = 1, then h (10) =

- 1
1
4
10
1
Solution
Given the differential equation f′′(x)=−f(x) and g(x)=f′(x). We are given h(x)=(f(x))2+(g(x))2. To find h(10), we first find the derivative of h(x): h′(x)=dxd[(f(x))2]+dxd[(g(x))2] Using the chain rule, this becomes: h′(x)=2f(x)f′(x)+2g(x)g′(x)
Substitute g(x)=f′(x): h′(x)=2f(x)g(x)+2g(x)g′(x)
Now, find g′(x): g′(x)=dxd[f′(x)]=f′′(x)
From the given condition, f′′(x)=−f(x). So, g′(x)=−f(x)
Substitute g′(x)=−f(x) back into the expression for h′(x): h′(x)=2f(x)g(x)+2g(x)(−f(x)) h′(x)=2f(x)g(x)−2f(x)g(x) h′(x)=0
Since the derivative of h(x) is 0 for all x, h(x) must be a constant function. Let h(x)=C, where C is a constant.
We are given that h(5)=1. Therefore, C=1. So, h(x)=1 for all values of x.
Consequently, h(10)=1. The final answer is 1 (Option B)