Solveeit Logo

Question

Question: If $A = \sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7}$ and $B = \cos\frac{2\pi}{7} + ...

If A=sin2π7+sin4π7+sin8π7A = \sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7} and B=cos2π7+cos4π7+cos8π7B = \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{8\pi}{7} then A2+B2\sqrt{A^2 + B^2} is equa

A

1

B

2\sqrt{2}

C

2

D

3\sqrt{3}

Answer

2\sqrt{2}

Explanation

Solution

To find A2+B2\sqrt{A^2 + B^2}, we can recognize this expression as the magnitude of a complex number. Let Z=B+iAZ = B + iA. Substituting the given expressions for AA and BB: Z=(cos2π7+cos4π7+cos8π7)+i(sin2π7+sin4π7+sin8π7)Z = \left(\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{8\pi}{7}\right) + i\left(\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7}\right)

Group the terms using Euler's formula, eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta: Z=(cos2π7+isin2π7)+(cos4π7+isin4π7)+(cos8π7+isin8π7)Z = \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right) + \left(\cos\frac{4\pi}{7} + i\sin\frac{4\pi}{7}\right) + \left(\cos\frac{8\pi}{7} + i\sin\frac{8\pi}{7}\right) Z=ei2π7+ei4π7+ei8π7Z = e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + e^{i\frac{8\pi}{7}}

Let ω=ei2π7\omega = e^{i\frac{2\pi}{7}}. This is a primitive 7th root of unity. Then Z=ω1+ω2+ω4Z = \omega^1 + \omega^2 + \omega^4.

This sum is a Gaussian period for p=7p=7. The quadratic residues modulo 7 are 1211^2 \equiv 1, 2242^2 \equiv 4, 3223^2 \equiv 2. So the set of quadratic residues is R={1,2,4}R = \{1, 2, 4\}. The sum Z=kRωkZ = \sum_{k \in R} \omega^k is denoted as η0\eta_0.

We know that for the 7th roots of unity, the sum of all roots is zero: 1+ω+ω2+ω3+ω4+ω5+ω6=01 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0. Let η0=ω1+ω2+ω4\eta_0 = \omega^1 + \omega^2 + \omega^4 and η1=ω3+ω5+ω6\eta_1 = \omega^3 + \omega^5 + \omega^6. From the sum of all roots, we have 1+η0+η1=01 + \eta_0 + \eta_1 = 0, so η0+η1=1\eta_0 + \eta_1 = -1.

Next, consider the product η0η1\eta_0 \eta_1: η0η1=(ω1+ω2+ω4)(ω3+ω5+ω6)\eta_0 \eta_1 = (\omega^1 + \omega^2 + \omega^4)(\omega^3 + \omega^5 + \omega^6) =ω1+3+ω1+5+ω1+6+ω2+3+ω2+5+ω2+6+ω4+3+ω4+5+ω4+6= \omega^{1+3} + \omega^{1+5} + \omega^{1+6} + \omega^{2+3} + \omega^{2+5} + \omega^{2+6} + \omega^{4+3} + \omega^{4+5} + \omega^{4+6} =ω4+ω6+ω7+ω5+ω7+ω8+ω7+ω9+ω10= \omega^4 + \omega^6 + \omega^7 + \omega^5 + \omega^7 + \omega^8 + \omega^7 + \omega^9 + \omega^{10} Since ω7=1\omega^7 = 1, we can simplify the powers of ω\omega: ω7=1\omega^7 = 1, ω8=ω1\omega^8 = \omega^1, ω9=ω2\omega^9 = \omega^2, ω10=ω3\omega^{10} = \omega^3. η0η1=ω4+ω6+1+ω5+1+ω1+1+ω2+ω3\eta_0 \eta_1 = \omega^4 + \omega^6 + 1 + \omega^5 + 1 + \omega^1 + 1 + \omega^2 + \omega^3 Rearranging the terms: η0η1=3+(ω1+ω2+ω3+ω4+ω5+ω6)\eta_0 \eta_1 = 3 + (\omega^1 + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6) Since k=16ωk=1\sum_{k=1}^{6} \omega^k = -1: η0η1=3+(1)=2\eta_0 \eta_1 = 3 + (-1) = 2.

Now we have a system of equations for η0\eta_0 and η1\eta_1:

  1. η0+η1=1\eta_0 + \eta_1 = -1
  2. η0η1=2\eta_0 \eta_1 = 2 η0\eta_0 and η1\eta_1 are the roots of the quadratic equation x2(η0+η1)x+η0η1=0x^2 - (\eta_0 + \eta_1)x + \eta_0 \eta_1 = 0: x2(1)x+2=0    x2+x+2=0x^2 - (-1)x + 2 = 0 \implies x^2 + x + 2 = 0. Using the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=1±124(1)(2)2(1)=1±182=1±72=1±i72x = \frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2(1)} = \frac{-1 \pm \sqrt{1 - 8}}{2} = \frac{-1 \pm \sqrt{-7}}{2} = \frac{-1 \pm i\sqrt{7}}{2}.

So, {η0,η1}={1+i72,1i72}\{\eta_0, \eta_1\} = \left\{\frac{-1 + i\sqrt{7}}{2}, \frac{-1 - i\sqrt{7}}{2}\right\}. To determine which value corresponds to η0=Z=B+iA\eta_0 = Z = B+iA, we need to check the sign of its imaginary part AA. A=sin2π7+sin4π7+sin8π7A = \sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7}. Note that sin8π7=sin(π+π7)=sinπ7\sin\frac{8\pi}{7} = \sin(\pi + \frac{\pi}{7}) = -\sin\frac{\pi}{7}. So, A=sin2π7+sin4π7sinπ7A = \sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} - \sin\frac{\pi}{7}. Also, sin4π7=sin(π4π7)=sin3π7\sin\frac{4\pi}{7} = \sin(\pi - \frac{4\pi}{7}) = \sin\frac{3\pi}{7}. A=sin2π7+sin3π7sinπ7A = \sin\frac{2\pi}{7} + \sin\frac{3\pi}{7} - \sin\frac{\pi}{7}. Let x=π7x = \frac{\pi}{7}. Then A=sin(2x)+sin(3x)sin(x)A = \sin(2x) + \sin(3x) - \sin(x). A=2sinxcosx+(3sinx4sin3x)sinxA = 2\sin x \cos x + (3\sin x - 4\sin^3 x) - \sin x A=sinx(2cosx+34sin2x1)A = \sin x (2\cos x + 3 - 4\sin^2 x - 1) A=sinx(2cosx+24(1cos2x))A = \sin x (2\cos x + 2 - 4(1-\cos^2 x)) A=sinx(2cosx+24+4cos2x)A = \sin x (2\cos x + 2 - 4 + 4\cos^2 x) A=sinx(4cos2x+2cosx2)A = \sin x (4\cos^2 x + 2\cos x - 2) A=2sinx(2cos2x+cosx1)A = 2\sin x (2\cos^2 x + \cos x - 1) A=2sinx(2cosx1)(cosx+1)A = 2\sin x (2\cos x - 1)(\cos x + 1). For x=π7x = \frac{\pi}{7}, x(0,π2)x \in (0, \frac{\pi}{2}), so sinx>0\sin x > 0 and cosx>0\cos x > 0. Also, cosx+1>0\cos x + 1 > 0. Since π7<π3\frac{\pi}{7} < \frac{\pi}{3}, and cosx\cos x is a decreasing function in (0,π)(0, \pi), we have cos(π7)>cos(π3)=12\cos(\frac{\pi}{7}) > \cos(\frac{\pi}{3}) = \frac{1}{2}. Therefore, 2cos(π7)>12\cos(\frac{\pi}{7}) > 1, which means 2cos(π7)1>02\cos(\frac{\pi}{7}) - 1 > 0. Thus, A>0A > 0.

Since AA is the imaginary part of Z=η0Z = \eta_0, and A>0A > 0, we must choose the root with the positive imaginary part: Z=η0=1+i72Z = \eta_0 = \frac{-1 + i\sqrt{7}}{2}. So, B=Re(Z)=12B = \text{Re}(Z) = -\frac{1}{2} and A=Im(Z)=72A = \text{Im}(Z) = \frac{\sqrt{7}}{2}.

The problem asks for A2+B2\sqrt{A^2 + B^2}, which is the magnitude of the complex number ZZ. A2+B2=Z=1+i72\sqrt{A^2 + B^2} = |Z| = \left|\frac{-1 + i\sqrt{7}}{2}\right| Z=12(1)2+(7)2|Z| = \frac{1}{2} \sqrt{(-1)^2 + (\sqrt{7})^2} Z=121+7|Z| = \frac{1}{2} \sqrt{1 + 7} Z=128|Z| = \frac{1}{2} \sqrt{8} Z=12(22)|Z| = \frac{1}{2} (2\sqrt{2}) Z=2|Z| = \sqrt{2}.