Solveeit Logo

Question

Question: If a, b, c are real then the value of determinant $\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^...

If a, b, c are real then the value of determinant a2+1abacabb2+1bcacbcc2+1\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ a c & b c & c^{2}+1\end{array} = 1 if

A

a+b+c=0

B

a+b+c=1

C

a+b+c=-1

D

a=b=c=0

Answer

a=b=c=0

Explanation

Solution

To find the value of the determinant and the condition for it to be 1, we can use properties of determinants.

The given determinant is: D=a2+1abacabb2+1bcacbcc2+1D = \begin{vmatrix} a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ac & bc & c^2+1 \end{vmatrix}

Step 1: Transform the determinant

Multiply C1C_1 by aa, C2C_2 by bb, C3C_3 by cc. To keep the determinant value unchanged, we must divide the entire determinant by abcabc.

D=1abca(a2+1)b(ab)c(ac)a(ab)b(b2+1)c(bc)a(ac)b(bc)c(c2+1)D = \frac{1}{abc} \begin{vmatrix} a(a^2+1) & b(ab) & c(ac) \\ a(ab) & b(b^2+1) & c(bc) \\ a(ac) & b(bc) & c(c^2+1) \end{vmatrix}

D=1abca3+aab2ac2a2bb3+bbc2a2cb2cc3+cD = \frac{1}{abc} \begin{vmatrix} a^3+a & ab^2 & ac^2 \\ a^2b & b^3+b & bc^2 \\ a^2c & b^2c & c^3+c \end{vmatrix}

Now, take aa common from R1R_1, bb common from R2R_2, and cc common from R3R_3.

D=abcabca2+1b2c2a2b2+1c2a2b2c2+1D = \frac{abc}{abc} \begin{vmatrix} a^2+1 & b^2 & c^2 \\ a^2 & b^2+1 & c^2 \\ a^2 & b^2 & c^2+1 \end{vmatrix}

D=a2+1b2c2a2b2+1c2a2b2c2+1D = \begin{vmatrix} a^2+1 & b^2 & c^2 \\ a^2 & b^2+1 & c^2 \\ a^2 & b^2 & c^2+1 \end{vmatrix}

Step 2: Simplify the transformed determinant

Let x=a2x = a^2, y=b2y = b^2, z=c2z = c^2. The determinant becomes:

D=x+1yzxy+1zxyz+1D = \begin{vmatrix} x+1 & y & z \\ x & y+1 & z \\ x & y & z+1 \end{vmatrix}

Apply the column operation C1C1+C2+C3C_1 \to C_1 + C_2 + C_3:

D=x+y+z+1yzx+y+z+1y+1zx+y+z+1yz+1D = \begin{vmatrix} x+y+z+1 & y & z \\ x+y+z+1 & y+1 & z \\ x+y+z+1 & y & z+1 \end{vmatrix}

Take (x+y+z+1)(x+y+z+1) common from C1C_1:

D=(x+y+z+1)1yz1y+1z1yz+1D = (x+y+z+1) \begin{vmatrix} 1 & y & z \\ 1 & y+1 & z \\ 1 & y & z+1 \end{vmatrix}

Apply row operations R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1:

D=(x+y+z+1)1yz010001D = (x+y+z+1) \begin{vmatrix} 1 & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}

Expand the determinant along C1C_1:

D=(x+y+z+1)1(1100)D = (x+y+z+1) \cdot 1 \cdot (1 \cdot 1 - 0 \cdot 0)

D=(x+y+z+1)1D = (x+y+z+1) \cdot 1

D=x+y+z+1D = x+y+z+1

Step 3: Substitute back x,y,zx, y, z and find the condition

Substitute x=a2,y=b2,z=c2x=a^2, y=b^2, z=c^2 back into the expression for DD:

D=a2+b2+c2+1D = a^2+b^2+c^2+1

The problem states that the value of the determinant is 1.

So, a2+b2+c2+1=1a^2+b^2+c^2+1 = 1

a2+b2+c2=0a^2+b^2+c^2 = 0

Since a,b,ca, b, c are real numbers, their squares (a2,b2,c2a^2, b^2, c^2) are non-negative. The sum of non-negative terms can be zero if and only if each term is zero.

Therefore, a2=0a^2=0, b2=0b^2=0, and c2=0c^2=0.

This implies a=0a=0, b=0b=0, and c=0c=0.

The condition for the determinant to be 1 is a=b=c=0a=b=c=0.