Solveeit Logo

Question

Question: $\frac{1}{log_{\sqrt{bc}}abc}+\frac{1}{log_{\sqrt{ca}}abc}+\frac{1}{log_{\sqrt{ab}}abc}$ has the val...

1logbcabc+1logcaabc+1logababc\frac{1}{log_{\sqrt{bc}}abc}+\frac{1}{log_{\sqrt{ca}}abc}+\frac{1}{log_{\sqrt{ab}}abc} has the value equal to-

A

1/2

B

1

C

2

D

4

Answer

1

Explanation

Solution

Using the property 1logxy=logyx\frac{1}{\log_x y} = \log_y x, the expression becomes: logabc(bc)+logabc(ca)+logabc(ab)\log_{abc}(\sqrt{bc}) + \log_{abc}(\sqrt{ca}) + \log_{abc}(\sqrt{ab}) Using the property logbx+logby+logbz=logb(xyz)\log_b x + \log_b y + \log_b z = \log_b (xyz): logabc(bccaab)=logabc(a2b2c2)=logabc(abc)\log_{abc}(\sqrt{bc} \cdot \sqrt{ca} \cdot \sqrt{ab}) = \log_{abc}(\sqrt{a^2 b^2 c^2}) = \log_{abc}(abc) Using the property logbb=1\log_b b = 1: logabc(abc)=1\log_{abc}(abc) = 1