Solveeit Logo

Question

Question: $\frac{1}{log_{\sqrt{bc}} abc}+\frac{1}{log_{\sqrt{ca}} abc}+\frac{1}{log_{\sqrt{ab}} abc}$ has the ...

1logbcabc+1logcaabc+1logababc\frac{1}{log_{\sqrt{bc}} abc}+\frac{1}{log_{\sqrt{ca}} abc}+\frac{1}{log_{\sqrt{ab}} abc} has the value equal to-

A

1/2

B

1

C

2

D

4

Answer

1

Explanation

Solution

Let the given expression be EE. E=1logbcabc+1logcaabc+1logababcE = \frac{1}{log_{\sqrt{bc}} abc}+\frac{1}{log_{\sqrt{ca}} abc}+\frac{1}{log_{\sqrt{ab}} abc} Using the property 1logxy=logyx\frac{1}{log_x y} = log_y x: E=logabcbc+logabcca+logabcabE = log_{abc} \sqrt{bc} + log_{abc} \sqrt{ca} + log_{abc} \sqrt{ab} Using the property logbx+logby+logbz=logb(xyz)log_b x + log_b y + log_b z = log_b (xyz): E=logabc(bc×ca×ab)E = log_{abc} (\sqrt{bc} \times \sqrt{ca} \times \sqrt{ab}) Simplify the argument: bc×ca×ab=(bc)1/2(ca)1/2(ab)1/2=a1/2b1/2b1/2c1/2c1/2a1/2=a1b1c1=abc\sqrt{bc} \times \sqrt{ca} \times \sqrt{ab} = (bc)^{1/2} (ca)^{1/2} (ab)^{1/2} = a^{1/2}b^{1/2} b^{1/2}c^{1/2} c^{1/2}a^{1/2} = a^1 b^1 c^1 = abc So, E=logabc(abc)E = log_{abc} (abc) Using the property logbb=1log_b b = 1: E=1E = 1