Solveeit Logo

Question

Question: For the mechanism $A + B \underset{k_2}{\stackrel{k_1}{\rightleftharpoons}} C; C \xrightarrow{k_3} ...

For the mechanism

A+Bk1k2C;Ck3DA + B \underset{k_2}{\stackrel{k_1}{\rightleftharpoons}} C; C \xrightarrow{k_3} D

The equilibrium step is fast.

The reaction rate, d[D]dt\frac{d[D]}{dt} is

Answer

k1k3k2[A][B]\frac{k_1 k_3}{k_2}[A][B]

Explanation

Solution

The rate-determining step is Ck3DC \xrightarrow{k_3} D, so the rate is k3[C]k_3[C]. The fast equilibrium A+Bk1k2CA + B \underset{k_2}{\stackrel{k_1}{\rightleftharpoons}} C implies k1[A][B]=k2[C]k_1[A][B] = k_2[C], thus [C]=k1k2[A][B][C] = \frac{k_1}{k_2}[A][B]. Substituting this into the rate equation yields d[D]dt=k3(k1k2[A][B])=k1k3k2[A][B]\frac{d[D]}{dt} = k_3 \left(\frac{k_1}{k_2}[A][B]\right) = \frac{k_1 k_3}{k_2}[A][B].