Solveeit Logo

Question

Question: A thin glass ($\mu$=1.5) lens has optical power of -10D in air. Its optical power in a liquid medium...

A thin glass (μ\mu=1.5) lens has optical power of -10D in air. Its optical power in a liquid medium with refractive index 1.6 will be

A

+1D

B

+2D

C

+1.25 D

D

+2.5 D

Answer

+1.25 D

Explanation

Solution

The optical power PP of a lens is given by P=1f=(μlensμmedium1)(1R11R2)P = \frac{1}{f} = (\frac{\mu_{lens}}{\mu_{medium}} - 1) (\frac{1}{R_1} - \frac{1}{R_2}). Let C=(1R11R2)C = (\frac{1}{R_1} - \frac{1}{R_2}) be the curvature term.

Power in air (PairP_{air}): Pair=(μgμair1)CP_{air} = (\frac{\mu_g}{\mu_{air}} - 1) C Given μg=1.5\mu_g = 1.5, μair=1\mu_{air} = 1, and Pair=10P_{air} = -10 D. 10=(1.511)C=0.5C-10 = (\frac{1.5}{1} - 1) C = 0.5 C C=100.5=20C = \frac{-10}{0.5} = -20 m1^{-1}.

Power in liquid (PliquidP_{liquid}): Pliquid=(μgμl1)CP_{liquid} = (\frac{\mu_g}{\mu_l} - 1) C Given μg=1.5\mu_g = 1.5 and μl=1.6\mu_l = 1.6. Pliquid=(1.51.61)(20)P_{liquid} = (\frac{1.5}{1.6} - 1) (-20) Pliquid=(15161)(20)P_{liquid} = (\frac{15}{16} - 1) (-20) Pliquid=(116)(20)P_{liquid} = (\frac{-1}{16}) (-20) Pliquid=2016=1.25P_{liquid} = \frac{20}{16} = 1.25 D.

Alternatively, using the ratio of powers: PliquidPair=(μgμl1)(μgμair1)\frac{P_{liquid}}{P_{air}} = \frac{(\frac{\mu_g}{\mu_l} - 1)}{(\frac{\mu_g}{\mu_{air}} - 1)} Pliquid10=(1.51.61)(1.511)=(116)(0.5)=18\frac{P_{liquid}}{-10} = \frac{(\frac{1.5}{1.6} - 1)}{(\frac{1.5}{1} - 1)} = \frac{(\frac{-1}{16})}{(0.5)} = \frac{-1}{8} Pliquid=10×(18)=108=1.25P_{liquid} = -10 \times (\frac{-1}{8}) = \frac{10}{8} = 1.25 D.