Solveeit Logo

Question

Question: If $[a \ b \ c] = 4$ then volume of parallelopiped with coterminous edges $a+2b, \ b+2c, \ c+2a$ is...

If [a b c]=4[a \ b \ c] = 4 then volume of parallelopiped with coterminous edges a+2b, b+2c, c+2aa+2b, \ b+2c, \ c+2a is

A

40 units

B

36 units

C

32 units

D

20 units

Answer

36 units

Explanation

Solution

To find the volume of the parallelepiped, we need to compute the scalar triple product of the coterminous edges a+2ba+2b, b+2cb+2c, and c+2ac+2a.

The volume VV is given by:

V=[(a+2b) (b+2c) (c+2a)]V = |[ (a+2b) \ (b+2c) \ (c+2a) ]|

Expanding the scalar triple product:

V=(a+2b)((b+2c)×(c+2a))V = | (a+2b) \cdot ((b+2c) \times (c+2a)) |

V=(a+2b)(b×c+2b×a+2c×c+4c×a)V = | (a+2b) \cdot (b \times c + 2b \times a + 2c \times c + 4c \times a) |

Since c×c=0c \times c = 0, we have:

V=(a+2b)(b×c+2b×a+4c×a)V = | (a+2b) \cdot (b \times c + 2b \times a + 4c \times a) |

V=a(b×c)+2a(b×a)+4a(c×a)+2b(b×c)+4b(b×a)+8b(c×a)V = | a \cdot (b \times c) + 2a \cdot (b \times a) + 4a \cdot (c \times a) + 2b \cdot (b \times c) + 4b \cdot (b \times a) + 8b \cdot (c \times a) |

Using the properties of scalar triple products, terms like a(b×a)a \cdot (b \times a), a(c×a)a \cdot (c \times a), b(b×c)b \cdot (b \times c), and b(b×a)b \cdot (b \times a) are all zero. Thus,

V=a(b×c)+8b(c×a)V = | a \cdot (b \times c) + 8b \cdot (c \times a) |

Since b(c×a)=a(b×c)b \cdot (c \times a) = a \cdot (b \times c), we have:

V=[a b c]+8[a b c]V = | [a \ b \ c] + 8 [a \ b \ c] |

V=9[a b c]V = | 9 [a \ b \ c] |

Given that [a b c]=4[a \ b \ c] = 4,

V=9×4=36V = | 9 \times 4 | = 36

Thus, the volume of the parallelepiped is 36 cubic units.