Solveeit Logo

Question

Question: Given the equation \[2^{1 + |\cos x| + |\cos x|^2 + \dots} \;=\; 4,\] show that this implies \[2^{...

Given the equation 21+cosx+cosx2+  =  4,2^{1 + |\cos x| + |\cos x|^2 + \dots} \;=\; 4, show that this implies 211cosx  =  222^{\frac{1}{1 - |\cos x|}} \;=\; 2^2 and hence find all solutions for xx.

Answer

cosx=12    cosx=±12,x=±π3+2πn  or  x=±2π3+2πn,  nZ.\boxed{|\cos x| = \tfrac12 \;\Longrightarrow\;\cos x = \pm\tfrac12,\quad x = \pm\tfrac{\pi}{3} + 2\pi n\;\text{or}\;x = \pm\tfrac{2\pi}{3} + 2\pi n,\;n\in\mathbb{Z}.}

Explanation

Solution

Step 1: Sum the infinite series

We recognize

1+cosx+cosx2+1 + |\cos x| + |\cos x|^2 + \dots

as a geometric series with first term 11 and ratio r=cosxr = |\cos x|. For convergence we need cosx<1|\cos x|<1. The sum is

11cosx.\frac{1}{1 - |\cos x|}.

Step 2: Equate to the given power

The equation becomes

211cosx=4=22.2^{\frac{1}{1 - |\cos x|}} = 4 = 2^2.

Hence,

11cosx=21cosx=12cosx=12.\frac{1}{1 - |\cos x|} = 2 \quad\Longrightarrow\quad 1 - |\cos x| = \tfrac12 \quad\Longrightarrow\quad |\cos x| = \tfrac12.

Step 3: Solve for xx

Since cosx=12|\cos x| = \tfrac12, we have

cosx=±12.\cos x = \pm \tfrac12.

The general solutions on the real line are

x=±π3+2πnorx=±2π3+2πn,nZ.x = \pm \frac{\pi}{3} + 2\pi n \quad\text{or}\quad x = \pm \frac{2\pi}{3} + 2\pi n, \quad n\in\mathbb{Z}.