Solveeit Logo

Question

Question: The three vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ be such that $\vec{c}$ is coplanar with $\vec{a...

The three vectors a\vec{a}, b\vec{b} and c\vec{c} be such that c\vec{c} is coplanar with a\vec{a} and b\vec{b}, ac=7\vec{a} \cdot \vec{c} = 7 and b\vec{b} is perpendicular to c\vec{c}, where a=i^+j^+k^\vec{a} = -\hat{i} + \hat{j} + \hat{k} and b=2i^+k^\vec{b} = 2\hat{i} + \hat{k}, then the value of 2a+b+c22|\vec{a} + \vec{b} + \vec{c}|^2 is _____.

A

75

B

150

C

37.5

D

60

Answer

75

Explanation

Solution

  1. Coplanarity and Perpendicularity: Since c\vec{c} is coplanar with a\vec{a} and b\vec{b}, we can write c=xa+yb\vec{c} = x\vec{a} + y\vec{b} for some scalars xx and yy. Given bc=0\vec{b} \cdot \vec{c} = 0, we substitute c\vec{c}: b(xa+yb)=0\vec{b} \cdot (x\vec{a} + y\vec{b}) = 0 x(ba)+y(bb)=0x(\vec{b} \cdot \vec{a}) + y(\vec{b} \cdot \vec{b}) = 0 Calculate dot products: a=i^+j^+k^\vec{a} = -\hat{i} + \hat{j} + \hat{k}, b=2i^+k^\vec{b} = 2\hat{i} + \hat{k} ba=(2)(1)+(0)(1)+(1)(1)=1\vec{b} \cdot \vec{a} = (2)(-1) + (0)(1) + (1)(1) = -1 bb=b2=22+02+12=5\vec{b} \cdot \vec{b} = |\vec{b}|^2 = 2^2 + 0^2 + 1^2 = 5 Substituting these: x(1)+y(5)=0    x+5y=0    x=5yx(-1) + y(5) = 0 \implies -x + 5y = 0 \implies x = 5y. So, c=5ya+yb=y(5a+b)\vec{c} = 5y\vec{a} + y\vec{b} = y(5\vec{a} + \vec{b}).

  2. Using ac=7\vec{a} \cdot \vec{c} = 7: Substitute c=y(5a+b)\vec{c} = y(5\vec{a} + \vec{b}) into ac=7\vec{a} \cdot \vec{c} = 7: a[y(5a+b)]=7\vec{a} \cdot [y(5\vec{a} + \vec{b})] = 7 y[5(aa)+(ab)]=7y [5(\vec{a} \cdot \vec{a}) + (\vec{a} \cdot \vec{b})] = 7 Calculate required dot products: aa=a2=(1)2+12+12=3\vec{a} \cdot \vec{a} = |\vec{a}|^2 = (-1)^2 + 1^2 + 1^2 = 3 ab=1\vec{a} \cdot \vec{b} = -1 (calculated earlier) Substituting these: y[5(3)+(1)]=7    y(151)=7    14y=7    y=12y [5(3) + (-1)] = 7 \implies y(15 - 1) = 7 \implies 14y = 7 \implies y = \frac{1}{2}. Thus, c=12(5a+b)\vec{c} = \frac{1}{2}(5\vec{a} + \vec{b}).

  3. Calculating a+b+c\vec{a} + \vec{b} + \vec{c}: a+b+c=a+b+12(5a+b)\vec{a} + \vec{b} + \vec{c} = \vec{a} + \vec{b} + \frac{1}{2}(5\vec{a} + \vec{b}) =(1+52)a+(1+12)b= (1 + \frac{5}{2})\vec{a} + (1 + \frac{1}{2})\vec{b} =72a+32b= \frac{7}{2}\vec{a} + \frac{3}{2}\vec{b}

  4. Calculating a+b+c2|\vec{a} + \vec{b} + \vec{c}|^2: Let S=72a+32b\vec{S} = \frac{7}{2}\vec{a} + \frac{3}{2}\vec{b}. S2=(72a+32b)(72a+32b)|\vec{S}|^2 = (\frac{7}{2}\vec{a} + \frac{3}{2}\vec{b}) \cdot (\frac{7}{2}\vec{a} + \frac{3}{2}\vec{b}) =(72)2a2+(32)2b2+2(72)(32)(ab)= (\frac{7}{2})^2 |\vec{a}|^2 + (\frac{3}{2})^2 |\vec{b}|^2 + 2(\frac{7}{2})(\frac{3}{2})(\vec{a} \cdot \vec{b}) Using a2=3|\vec{a}|^2 = 3, b2=5|\vec{b}|^2 = 5, ab=1\vec{a} \cdot \vec{b} = -1: S2=494(3)+94(5)+2(214)(1)|\vec{S}|^2 = \frac{49}{4}(3) + \frac{9}{4}(5) + 2(\frac{21}{4})(-1) S2=1474+454424=147+45424=1504=752|\vec{S}|^2 = \frac{147}{4} + \frac{45}{4} - \frac{42}{4} = \frac{147 + 45 - 42}{4} = \frac{150}{4} = \frac{75}{2}.

  5. Final Value: The question asks for 2a+b+c22|\vec{a} + \vec{b} + \vec{c}|^2. 2×S2=2×752=752 \times |\vec{S}|^2 = 2 \times \frac{75}{2} = 75.